AI Article Synopsis

  • An effective cancer blood biomarker screening strategy can distinguish between aggressive and nonaggressive tumors, which is crucial for early intervention.
  • Researchers studied mouse models of human ovarian cancer to track how biomarker levels in the blood correlate with tumor growth using various imaging techniques.
  • They developed a mathematical model predicting tumor-specific biomarker kinetics, which, when scaled up to human parameters, showed potential for early detection of aggressive tumors up to 8.9 years before traditional imaging could, indicating broad applicability for other solid cancers.

Article Abstract

An effective cancer blood biomarker screening strategy must distinguish aggressive from nonaggressive tumors at an early, intervenable time. However, for blood-based strategies to be useful, the quantity of biomarker shed into the blood and its relationship to tumor growth or progression must be validated. To study how blood biomarker levels correlate with early-stage viable tumor growth in a mouse model of human cancer, we monitored early tumor growth of engineered human ovarian cancer cells (A2780) implanted orthotopically into nude mice. Biomarker shedding was monitored by serial blood sampling, whereas tumor viability and volume were monitored by bioluminescence imaging and ultrasound imaging. From these metrics, we developed a mathematical model of cancer biomarker kinetics that accounts for biomarker shedding from tumor and healthy cells, biomarker entry into vasculature, biomarker elimination from plasma, and subject-specific tumor growth. We validated the model in a separate set of mice in which subject-specific tumor growth rates were accurately predicted. To illustrate clinical translation of this strategy, we allometrically scaled model parameters from mouse to human and used parameters for PSA shedding and prostate cancer. In this manner, we found that blood biomarker sampling data alone were capable of enabling the detection and discrimination of simulated aggressive (2-month tumor doubling time) and nonaggressive (18-month tumor doubling time) tumors as early as 7.2 months and 8.9 years before clinical imaging, respectively. Our model and screening strategy offers broad impact in their applicability to any solid cancer and associated biomarkers shed, thereby allowing a distinction between aggressive and nonaggressive tumors using blood biomarker sampling data alone. .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6010058PMC
http://dx.doi.org/10.1158/0008-5472.CAN-16-2904DOI Listing

Publication Analysis

Top Keywords

tumor growth
20
blood biomarker
16
screening strategy
12
biomarker
10
tumor
9
aggressive nonaggressive
8
nonaggressive tumors
8
tumors early
8
biomarker shedding
8
subject-specific tumor
8

Similar Publications

Tumor heterogeneity remains a formidable obstacle in targeted cancer therapy, often leading to suboptimal treatment outcomes. This study presents an innovative approach that harnesses controlled inflammation to guide neutrophil-mediated drug delivery, effectively overcoming the limitations imposed by tumor heterogeneity. By inducing localized inflammation within tumors using lipopolysaccharide, it significantly amplify the recruitment of drug-laden neutrophils to tumor sites, irrespective of specific tumor markers.

View Article and Find Full Text PDF

Abdominal aortic aneurysm (AAA) is a severe cardiovascular disease (CVD) that is partly attributable to endothelial dysfunction, inflammatory response, and angiogenesis. G protein-coupled receptor 4 (GPR4), a proton-sensitive G protein-coupled receptor that is abundantly expressed in vascular endothelial cells, has been associated with numerous physiological functions. Nevertheless, its potential involvement in the development of AAA remains unexplored.

View Article and Find Full Text PDF

[Abscisic acid - food chain and human health].

Orv Hetil

January 2025

1 Semmelweis Egyetem, Általános Orvostudományi Kar, Városmajori Szív- és Érgyógyászati Klinika, Kísérletes Kardiológiai és Sebészeti Műtéttani Tanszék Budapest, Nagyvárad tér 4., 1089 Magyarország.

View Article and Find Full Text PDF

Elevated MRPS23 expression facilitates aggressive phenotypes in breast cancer cells.

Cell Mol Biol (Noisy-le-grand)

January 2025

Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.

Mitochondrial ribosomal protein S23 (MRPS23), encoded by a nuclear gene, is a well-known driver of proliferation in cancer. It participates in mitochondrial protein translation, and its expression association has been explored in many types of cancer. However, MRPS23 expression associations are rarely reported in breast cancer (BC).

View Article and Find Full Text PDF

In this study, the effects of histone deacetylase inhibitor CI-994 and nanotechnological drug liposomal cisplatin LipoPlatin on Luminal A breast cancer and triple-negative breast cancer were explored using agents alone and in combination. MCF-7 and MDA-MB-231 cell lines were used. Cell viability, and cell index values obtained from xCELLigence System, MI, BrdU LI and AI were evaluated in experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!