Physical activity and hippocampal volume in middle-aged patients with type 1 diabetes.

Neurology

From the Department of Epidemiology, Graduate School of Public Health (K.A.N., T.J.O., T.C., C.R.), Department of Psychology (R.L.L., J.R.J., K.I.E.), and Department of Psychiatry, School of Medicine (H.J.A., J.R.J.), University of Pittsburgh, PA.

Published: April 2017

Objective: To examine the cross-sectional association between physical activity (PA) and hippocampal volume in middle-aged adults with childhood-onset type 1 diabetes (T1D), and whether hyperglycemia and insulin sensitivity contribute to this relationship.

Methods: We analyzed neuroimaging and self-reported PA data from 79 adults with T1D from the Pittsburgh Epidemiology of Diabetes Complications Study (mean age 50 years, mean duration 41 years) and 122 similarly aged adults without T1D (mean age 48 years). Linear regression models, controlling for intracranial volume, sex, education, and age, tested associations between PA and gray matter volumes of hippocampi and total brain in the 2 groups. For the T1D group, models further controlled for hyperglycemia and glucose disposal rate, a measure of insulin sensitivity.

Results: PA was significantly lower in the T1D than in the non-T1D group (median [interquartile range] 952 kcal [420-2,044] vs 1,614 kcal [588-3,091], respectively). Higher PA was significantly associated with larger hippocampi for T1D, but not for non-T1D (standardized β [ values] from regression models adjusted for intracranial volume, sex, age, and education: 0.270 [ < 0.001] and 0.098 [ = 0.12], respectively). Neither hyperglycemia nor glucose disposal rate substantially modified this association. Relationships between PA and total brain gray matter volume were similar.

Conclusions: A cross-sectional association between higher PA and larger hippocampi is already detectable by middle age for these patients with T1D, and it appears robust to chronic hyperglycemia and insulin sensitivity. Proof-of-concept studies should investigate whether increasing PA preserves hippocampal volume and the mechanisms underlying the effects of PA on hippocampal volume.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5395074PMC
http://dx.doi.org/10.1212/WNL.0000000000003805DOI Listing

Publication Analysis

Top Keywords

hippocampal volume
16
physical activity
8
activity hippocampal
8
volume middle-aged
8
type diabetes
8
cross-sectional association
8
hyperglycemia insulin
8
insulin sensitivity
8
adults t1d
8
age years
8

Similar Publications

Aim: The present investigation aimed to explore in rats the early postnatal dysfunction of the brain muscarinic cholinergic system (EPDMChS) during the most vulnerable period of postnatal development, as the possible main factor for changes in adult hippocampal neurogenesis and disorders in hippocampus-dependent spatial learning and memory.

Methods: White inbred rats (n=15 in each group) were used. EPDMCHS was produced by a new method, which includes early postnatal blocking of M1-M5 muscarinic acetylcholine receptors in the rat pups, using subcutaneous injection of Scopolamine during postnatal days 7-28.

View Article and Find Full Text PDF

Background: Subcortical ischemic vascular dementia (SIVD) is a common subtype of vascular dementia. Currently, the bilateral common carotid artery stenosis (BCAS) mouse model is the most suitable SIVD rodent model. In this study, we investigated the functional and structural impairments in the hippocampus 1 month after BCAS.

View Article and Find Full Text PDF

Walking and Hippocampal Formation Volume Changes: A Systematic Review.

Brain Sci

January 2025

Department of Architecture, University of Cambridge, Cambridge CB2 1PX, UK.

Background/objectives: Sustaining the human brain's hippocampus from atrophy throughout ageing is critical. Exercise is proven to be effective in promoting adaptive hippocampal plasticity, and the hippocampus has a bidirectional relationship with the physical environment. Therefore, this systematic review explores the effects of walking, a simple physical activity in the environment, on hippocampal formation volume changes for lifelong brain and cognitive health.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a complex, progressive, and irreversible neurodegenerative disorder marked by cognitive decline and memory loss. Early diagnosis is the most effective strategy to slow the disease's progression. Mild Cognitive Impairment (MCI) is frequently viewed as a crucial stage before the onset of AD, making it the ideal period for therapeutic intervention.

View Article and Find Full Text PDF

Background: There is a paucity of evidence on the association between genetic propensity for hippocampal atrophy with cognitive outcomes. Therefore, we examined the relationship of the polygenic risk score for hippocampal atrophy (PRShp) with the incidence of amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD) as well as the rates of cognitive decline.

Methods: Participants were drawn from the population-based HELIAD cohort.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!