CeO nanoparticles (CeO NPs) are well-known for their catalytic properties and antioxidant potential. Recent uses in therapy are based on the Ce ions released by CeO NPs. Reactions involving redox cycles between Ce and Ce oxidation stage seem to promote scavenging of reactive oxygen species (ROS), thus protecting cells from oxygen damage. However, the internalization of CeO NPs and release of Ce could be responsible for a toxic effect on cells. The literature reports controversial results on the toxicity of CeO NPs to phytoplankton. Therefore, we have tested the potential toxic effect of two CeO NPs (with positive and negative zeta potential) and bulk CeO (at 0.1, 1, 10, 100 and 200mg·L) on three species of microalgae from different environments: marine diatom (Phaeodactylum tricornutum), marine chlorophyte (Nannochloris atomus) and freshwater chlorophyte (Chlamydomonas reinhardtii) over 72h in batch cultures. Responses measured in the microalgae population are: growth, chlorophyll a, cell size, cell complexity, percentage of ROS, and percentage of cell membrane damage. Positive zeta potential CeO NPs provoked greater cell complexity (up to 78, 172 and 23 times more cell complexity than in controls found for C. reinhardtii, P. tricornutum and N. atomus respectively) than negative zeta potential CeO NPs. The SSC signal detected by flow cytometry measured increases of particles entering cells, and this is related to cell viability and levels of intracellular ROS (correlation between SSC and percentage of ROS of 0.72 and 0.97 found for C. reinhardtii and P. tricornutum). When increased cellular complexity over controls is between 2 and 6 times greater, CeO (in bulk or nanoparticulate form) seems to protect against ROS. When increased cellular complexity is from 7 to 23 times greater, CeO does not provoke toxic responses; however, when increased cellular complexity over controls is very high, from 61 to 172 times, increased ROS production and toxic responses are found. Results show that two factors, the charge of CeO NPs and cell wall structure, constitute the primary barrier to the possible accumulation of CeO NPs within phytoplankton cytosol.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2017.03.007DOI Listing

Publication Analysis

Top Keywords

ceo nps
40
cell complexity
16
ceo
14
zeta potential
12
complexity controls
12
increased cellular
12
cellular complexity
12
cell
9
nps
9
cell wall
8

Similar Publications

The bacterial infection and oxidative wound microenvironment delay skin repair and necessitate intelligent wound dressings to enable scarless wound healing. The immunoglobulin of yolk (IgY) exhibits immunotherapeutic potential for the potential treatment of antimicrobial-resistant pathogens, while cerium oxide nanoparticles (CeO NPs) could scavenge superoxide dismutase (SOD) and inflammation. The overarching objective of this study was to incorporate IgY and CeO NPs into poly(L-lactide-co-glycolide)/gelatin (PLGA/Gel)-based dressings (P/G@IYCe) for infected skin repair.

View Article and Find Full Text PDF

Background: It is well established that the interaction between osteogenesis and inflammation can impact bone tissue regeneration. The use of nanoparticles to treat and alleviate inflammation at the molecular level has the potential to improve the osteogenic microenvironment and serve as a therapeutic approach.

Methods: We have synthesized new hollow cerium oxide nanoparticles and doped with cathepsin B inhibitor (CA-074Me) to create novel CeO@CA-074Me NPs.

View Article and Find Full Text PDF

Microbe-mediated synthesis of defect-rich CeO nanoparticles with oxidase-like activity for colorimetric detection of L-penicillamine and glutathione.

Nanoscale

January 2025

College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.

To enhance production efficiency, curtail costs, and minimize environmental impact, developing simple and sustainable nanozyme synthesis methods has been the focus of relevant research. In this report, graphite-coated CeO nanoparticles (CeO NPs) with multiple defects (Ce defects, oxygen vacancies and carbon defects) were synthesized the culture filtrate of the extremely radioresistant bacterium R12 ( R12). The as-prepared CeO NPs exhibit remarkable oxidase (OXD)-like activity, efficiently catalyzing the oxidation of the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) to form oxTMB, even in the absence of HO.

View Article and Find Full Text PDF

Development of a sandwich-type electrochemical DNA sensor based on CeO/AuPt nanoprobes for highly sensitive detection of hepatitis B virus DNA.

Bioelectrochemistry

January 2025

The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003 China. Electronic address:

To provide accurate diagnostic evidence for early hepatitis B virus (HBV) infection-related diseases, this study targeted HBV DNA as an analyte, where a sandwich-type electrochemical DNA sensor based on gold nanoparticles/reduced graphene oxide (Au NPs/ERGO) and cerium oxide/gold-platinum nanoparticles (CeO/AuPt NPs) was constructed. Au NPs/ERGO composite nanomaterials were first synthesized on the surface of a glass carbon electrode using electrochemical co-reduction, which significantly improved the specific surface area and electrical conductivity of the electrode. Further specific hybridization of target HBV-DNA was performed by combining capture probe DNA (S1-DNA) bound to AuNPs/ERGO with CeO/AuPt modified signal probe DNA (S2-DNA).

View Article and Find Full Text PDF

Poor diabetic wound healing poses a critical threat to human health. Excessive oxidative stress and increased susceptibility to bacterial infection are key issues that impede diabetic wound healing. Cerium oxide nanoparticles (CeO NPs) have attracted increasing attention because of their unique antioxidant and antimicrobial properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!