Objective: Resin monomers released from unpolymerized dental adhesives or composites and bacterial products like lipopolysaccharide (LPS) or lipoteichoic (LTA) are simultaneously present in specific applications following treatment of deep caries lesions. This review is focused on evidence concerning cell responses as a result of the interactions between adaptive mechanisms activated by resin monomers and signaling pathways of the immune response triggered by LPS or LTA originating from cariogenic microorganisms.
Methods: Current understanding of dental caries progression and pathways in eukaryotic cells in response to LPS stimulation in a clinical situation as well as cell reactions to oxidative stress caused by resin monomers is analyzed based on publications available through online databases.
Results: LPS and LTA activate the redox-sensitive transcription factor NF-κB as a major regulator in immunocompetent dental pulp cells. Cell reactions to LPS/LTA associated with oxidative stress are downregulated by the redox-sensitive transcription factor Nrf2. Thus, activation of Nrf2 through resin monomer-induced oxidative stress due to the increased formation of reactive oxygen species (ROS) could be a molecular mechanism underlying the inhibition of LPS-stimulated responses such as the release of pro- or anti-inflammatory cytokines. Likewise, crosslinking of NF-κB and Nrf2-regulated biocompatibility pathways regulates cell death induced by the interaction of LPS and resin monomers.
Significance: A multidimensional scenario through independent but linked NF-κB- and Nrf2-regulated pathways is activated in the clinical situation of caries treatment. Unfavorable or beneficial consequences strictly depend on a wide range of combinations and concentrations of bacterial products and resin monomers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dental.2017.02.006 | DOI Listing |
Macromol Rapid Commun
January 2025
Department of Advanced Materials Engineering, Chung-Ang University, Anseong, 17546, Republic of Korea.
Transport equipment manufacturers in the automotive and aerospace industries are focused on developing materials that enhance fuel efficiency and reduce carbon dioxide emissions. A significant approach is employing lightweight materials like aluminum, magnesium, and polymer-based composites. Polyamide-based composites, particularly nylon 66, as viable alternatives due to their excellent rigidity, chemical resistance, and thermal stability are investigated to address the limitations of traditional thermosetting resins, which are difficult to recycle and have lengthy molding processes that hinder mass production.
View Article and Find Full Text PDFBiofabrication
January 2025
Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, Wroclaw, 50-372, POLAND.
The objective of this review is to deepen understanding and emphasize scientific and technological progress in the transformation of crop by-products into bio-based dental materials. Amid heightened environmental sustainability consciousness, various sectors including dentistry have achieved novel advancements by utilizing bio-based materials from crop by-products for dental restorations. This paper provides a thorough review of the extraction, processing, and application of natural polymers, biopolymers, and bio-based mixtures at both the macroscopic and nanoscopic scales, with a focus on their contextualization within dental practices.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastów 45, 70-311 Szczecin, Poland.
Photocurable materials offer a rapid transition from a liquid to a solid state, and have recently received great interest in the medical field. However, while dental resins are very popular, only a few materials have been developed for soft tissue repair. This study aims to synthesize a difunctional methacrylate monomer using a dibutyltin dilaurate which is suitable for the photocuring of soft materials.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Professional Organization and Medical Legislation-Malpractice, "Carol Davila" University of Medicine and Pharmacy, 17-23 Plevnei Street, 020021 Bucharest, Romania.
In the latter part of the 20th century, remarkable developments in new dental materials and technologies were achieved. However, regarding the impact of dental resin-based materials 3D-printed on cellular responses, there have been a limited number of published studies recently. The biocompatibility of dental restorative materials is a controversial topic, especially when discussing modern manufacturing technologies.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China.
Benzoxazine and o-phthalonitrile resin are two of the most eminent polymer matrices within high-performance fiber-reinforced resin-based composite materials. Studying the influence modalities of their structures and forming processes on performance can furnish a theoretical basis for the design and manufacturing of superior performance composite materials. In this study, we initially incorporated a fluorene structure into the molecular main chain through molecular design to prepare a fluorene-containing benzoxazine nitrile-based resin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!