Background: Prior calculations of the burden of disease from environmental lead exposure in low- and middle-income countries (LMICs) have not included estimates of the burden from lead-contaminated sites because of a lack of exposure data, resulting in an underestimation of a serious public health problem.

Objective: We used publicly available statistics and detailed site assessment data to model the number of informal used lead-acid battery (ULAB) recyclers and the resulting exposures in 90 LMICs. We estimated blood lead levels (BLLs) using the US Environment Protection Agency's Integrated Exposure Uptake Biokinetic Model for Lead in Children and Adult Lead Model. Finally, we used data and algorithms generated by the World Health Organization to calculate the number of attributable disability adjusted life years (DALYs).

Results: We estimated that there are 10,599 to 29,241 informal ULAB processing sites where human health is at risk in the 90 countries we reviewed. We further estimated that 6 to 16.8 million people are exposed at these sites and calculate a geometric mean BLL for exposed children (0-4 years of age) of 31.15 μg/dL and a geometric mean BLL for adults of 21.2 μg/dL. We calculated that these exposures resulted in 127,248 to 1,612,476 DALYs in 2013.

Conclusions: Informal ULAB processing is currently causing widespread lead poisoning in LMICs. There is an urgent need to identify and mitigate exposures at existing sites and to develop appropriate policy responses to minimize the creation of new sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aogh.2016.10.015DOI Listing

Publication Analysis

Top Keywords

informal lead-acid
8
lead-acid battery
8
informal ulab
8
ulab processing
8
geometric bll
8
lead
6
sites
6
global burden
4
burden lead
4
lead toxicity
4

Similar Publications

Background: Lead, a potent neurotoxin, causes irreversible damage to the nervous system, and low- and middle-income countries face huge health and economic productivity losses due to childhood lead exposure. In Bangladesh, informal Used Lead Acid Battery (ULAB) recycling sites are an important source of lead pollution. Little is known about lead awareness among communities exposed to ULAB recycling.

View Article and Find Full Text PDF
Article Synopsis
  • New energy vehicles (NEVs) are gaining popularity, leading to an increase in the number of scrapped NEV batteries and necessitating research on battery recycling for sustainability.
  • Recent analysis shows rapid growth in NEV battery recycling research, highlighting international collaboration and a shift in focus from lead-acid to lithium batteries, with supply chain and circular economy aspects becoming key topics.
  • Recommendations include government support for recycling networks and consumer incentives, as well as encouraging companies to adopt greener technologies and establish collaborative platforms.
View Article and Find Full Text PDF

Widespread use of lead acid batteries (LABs) is resulting in the generation of million tons of battery waste, globally. LAB waste contains critical and hazardous materials, which have detrimental effects on the environment and human health. In recent times, recycling of the LABs has become efficient but the collection of batteries in developing countries is not efficient, which led to the non-professional treatment and recycling of these batteries in the informal sector.

View Article and Find Full Text PDF

Global ground-level measurements of elements in ambient particulate matter (PM) can provide valuable information to understand the distribution of dust and trace elements, assess health impacts, and investigate emission sources. We use X-ray fluorescence spectroscopy to characterize the elemental composition of PM samples collected from 27 globally distributed sites in the Surface PARTiculate mAtter Network (SPARTAN) over 2019-2023. Consistent protocols are applied to collect all samples and analyze them at one central laboratory, which facilitates comparison across different sites.

View Article and Find Full Text PDF

The potential toxic heavy metal runoff from antimony mining areas poses a serious threat to the water environment and the health of residents in the village. The study found that the average concentrations of As, Sb, Cr, Pb, and Cd in the runoff were 0.1237, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!