Particulate matter (PM) such as ultrafine particulate matter (UFP) and the organic compound pollutants such as polycyclic aromatic hydrocarbon (PAH) are widespread in the environment. UFP and PAH are present in the air, and their presence may enhance their individual adverse effects on human health. However, the mechanism and effect of their combined interactions on human cells are not well understood. We investigated the combined toxicity of silica nanoparticles (SiNPs) (UFP) and Benzo[a]pyrene (B[a]P) (PAH) on human endothelial cells. Human umbilical vascular endothelial cells (HUVECs) were exposed to SiNPs or B[a]P, or a combination of SiNPs and B[a]P. The toxicity was investigated by assessing cellular oxidative stress, DNA damage, cell cycle arrest, and apoptosis. Our results show that SiNPs were able to induce reactive oxygen species generation (ROS). B[a]P, when acting alone, had no toxicity effect. However, a co-exposure of SiNPs and B[a]P synergistically induced DNA damage, oxidative stress, cell cycle arrest at the G2/M check point, and apoptosis. The co-exposure induced G2/M arrest through the upregulation of Chk1 and downregulation of Cdc25C, cyclin B1. The co-exposure also upregulated bax, caspase-3, and caspase-9, the proapoptic proteins, while down-regulating bcl-2, which is an antiapoptotic protein. These results show that interactions between SiNPs and B[a]P synergistically potentiated toxicological effects on HUVECs. This information should help further our understanding of the combined toxicity of PAH and UFP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5369125PMC
http://dx.doi.org/10.3390/ijerph14030289DOI Listing

Publication Analysis

Top Keywords

sinps b[a]p
16
cell cycle
12
cycle arrest
12
endothelial cells
12
silica nanoparticles
8
human umbilical
8
particulate matter
8
combined toxicity
8
oxidative stress
8
dna damage
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!