Blockage of Glyoxalase I Inhibits Colorectal Tumorigenesis and Tumor Growth via Upregulation of STAT1, p53, and Bax and Downregulation of c-Myc and Bcl-2.

Int J Mol Sci

Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.

Published: March 2017

GlyoxalaseI (GLOI) is an enzyme that catalyzes methylglyoxal metabolism. Overexpression of GLOI has been documented in numerous tumor tissues, including colorectal cancer (CRC). The antitumor effects of GLOI depletion have been demonstrated in some types of cancer, but its role in CRC and the mechanisms underlying this activity remain largely unknown. Our purpose was to investigate the antitumor effects of depleted GLOI on CRC in vitro and in vivo. RNA interference was used to deplete GLOI activity in four CRC cell lines. The cells' proliferation, apoptosis, migration, and invasion were assessed by using the Cell Counting Kit-8, plate colony formation assay, flow cytometry, and transwell assays. Protein and mRNA levels were analyzed by western blot and quantitative real-time PCR (qRT-PCR), respectively. The antitumor effect of GLOI depletion in vivo was investigated in a SW620 xenograft tumor model in BALB/c nude mice. Our results show that GLOI is over-expressed in the CRC cell lines. GLOI depletion inhibited the proliferation, colony formation, migration, and invasion and induced apoptosis of all CRC cells compared with the controls. The levels of signal transducer and activator of transcription 1 (STAT1), p53, and Bcl-2 assaciated X protein (Bax) were upregulated by GLOI depletion, while cellular homologue of avian myelocytomatosis virus oncogene (c-Myc) and B cell lymphoma/lewkmia-2 (Bcl-2) were downregulated. Moreover, the growth of SW620-induced CRC tumors in BALB/c nude mice was significantly attenuated by GLOI depletion. The expression levels of STAT1, p53, and Bax were increased and those of c-Myc and Bcl-2 were decreased in the GLOI-depleted tumors. Our findings demonstrate that GLOI depletion has an antitumor effect through the STAT1 or p53 signaling pathways in CRC, suggesting that GLOI is a potential therapeutic target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5372586PMC
http://dx.doi.org/10.3390/ijms18030570DOI Listing

Publication Analysis

Top Keywords

gloi depletion
24
stat1 p53
16
gloi
12
p53 bax
8
c-myc bcl-2
8
crc
8
antitumor effects
8
crc cell
8
cell lines
8
migration invasion
8

Similar Publications

Background: Depression and memory loss are prevalent neurodegenerative disorders, with diabetic patients facing an elevated risk of brain dysfunction. Methylglyoxal (MGO) formation, which is heightened in diabetes owing to hyperglycemia and gut dysbiosis, may serve as a critical link between diabetes and brain diseases. Despite the high prevalence of MGO, the precise mechanisms underlying MGO-induced depression and memory loss remain unclear.

View Article and Find Full Text PDF

Blockage of Glyoxalase I Inhibits Colorectal Tumorigenesis and Tumor Growth via Upregulation of STAT1, p53, and Bax and Downregulation of c-Myc and Bcl-2.

Int J Mol Sci

March 2017

Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.

GlyoxalaseI (GLOI) is an enzyme that catalyzes methylglyoxal metabolism. Overexpression of GLOI has been documented in numerous tumor tissues, including colorectal cancer (CRC). The antitumor effects of GLOI depletion have been demonstrated in some types of cancer, but its role in CRC and the mechanisms underlying this activity remain largely unknown.

View Article and Find Full Text PDF

Aim: Metformin plays an important role in the inhibition of cancer cell growth and prolongs remission durations. It reverses progestin-resistance in endometrial cancer cells by downregulating glyoxalase I (GloI) expression. This study aimed to investigate the effect of metformin on endometrial cancer cell chemotherapeutic sensitivity and explore the underlying molecular mechanisms.

View Article and Find Full Text PDF

Background: The glucose degradation products (GDP) presentin conventional peritoneal dialysis fluids (PDF) may exert adverse effects toward human peritoneal mesothelial cells (HPMC). Some GDP can be detoxified by the glyoxalase/ glutathione pathway. It has been shown that the addition of glyoxalase I (GLO-I) and reduced glutathione (GSH) to PDF effectively eliminates GDP.

View Article and Find Full Text PDF

Reversal of anticancer drug resistance by COTC based on intracellular glutathione and glyoxalase I.

Bioorg Med Chem Lett

February 2005

Graduate School of Science and Technology, Keio University, Hiyoshi, Yokohama 223-8522, Japan.

Suppression of resistance to anticancer drugs by COTC of glyoxalase I (GloI) inhibitor targeting intracellular glutathione (GSH) and GloI was studied. Depletion of the cellular GSH content and inhibition of GloI by COTC increased chemotherapy-mediated apoptosis in apoptosis-resistant pancreatic adenocarcinoma AsPC-1 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!