The quantitative analysis of electron-optical phase images recorded using off-axis electron holography often relies on the use of computer simulations of electron propagation through a sample. However, simulations that make use of the independent atom approximation are known to overestimate experimental phase shifts by approximately 10%, as they neglect bonding effects. Here, we compare experimental and simulated phase images for few-layer WSe_{2}. We show that a combination of pseudopotentials and all-electron density functional theory calculations can be used to obtain accurate mean electron phases, as well as improved atomic-resolution spatial distribution of the electron phase. The comparison demonstrates a perfect contrast match between experimental and simulated atomic-resolution phase images for a sample of precisely known thickness. The low computational cost of this approach makes it suitable for the analysis of large electronic systems, including defects, substitutional atoms, and material interfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.118.086101DOI Listing

Publication Analysis

Top Keywords

phase images
16
electron-optical phase
8
bonding effects
8
experimental simulated
8
phase
6
quantitative agreement
4
agreement electron-optical
4
images
4
images wse_{2}
4
wse_{2} simulations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!