Most neglected tropical diseases (NTDs) have complex life cycles and are challenging to control. The "2020 goals" of control and elimination as a public health programme for a number of NTDs are the subject of significant international efforts and investments. Beyond 2020 there will be a drive to maintain these gains and to push for true local elimination of transmission. However, these diseases are affected by variations in vectors, human demography, access to water and sanitation, access to interventions and local health systems. We therefore argue that there will be a need to develop local quantitative expertise to support elimination efforts. If available now, quantitative analyses would provide updated estimates of the burden of disease, assist in the design of locally appropriate control programmes, estimate the effectiveness of current interventions and support 'real-time' updates to local operations. Such quantitative tools are increasingly available at an international scale for NTDs, but are rarely tailored to local scenarios. Localised expertise not only provides an opportunity for more relevant analyses, but also has a greater chance of developing positive feedback between data collection and analysis by demonstrating the value of data. This is essential as rational program design relies on good quality data collection. It is also likely that if such infrastructure is provided for NTDs there will be an additional impact on the health system more broadly. Locally tailored quantitative analyses can help achieve sustainable and effective control of NTDs, but also underpin the development of local health care systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698767 | PMC |
http://dx.doi.org/10.1186/1753-6561-9-S10-S6 | DOI Listing |
Int J Biol Macromol
January 2025
Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia.
Nanotechnology involves the utilization of materials with exceptional properties at the nanoscale. Over the past few years, nanotechnologies have demonstrated significant potential in improving human health, particularly in medical treatments. The self-assembly characteristic of RNA is a highly effective method for designing and constructing nanostructures using a combination of biological, chemical, and physical techniques from different fields.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
The COVID-19 pandemic highlighted shortcomings in forecasting models, such as unreliable inputs/outputs and poor performance at critical points. As COVID-19 remains a threat, it is imperative to improve current forecasting approaches by incorporating reliable data and alternative forecasting targets to better inform decision-makers. Wastewater-based epidemiology (WBE) has emerged as a viable method to track COVID-19 transmission, offering a more reliable metric than reported cases for forecasting critical outcomes like hospitalizations.
View Article and Find Full Text PDFClin Nutr
December 2024
Center for Smart Health, School of Nursing, The Hong Kong Polytechnic University, Hong Kong, China.
Background And Aims: Post-stroke dysphagia is highly prevalent and causes complication. While video games have demonstrated potential to increase patient engagement in rehabilitation, their efficacy in stroke patients with dysphagia remains unclear. This aim of this study was to explore the effectiveness of the artificial intelligence-based video-game (AI-VG) intervention in improving swallowing function among stroke patients with dysphagia.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow city, Poland.
Fly ash, produced during coal combustion for energy making, which is recognized as an industrial by-product, could lead to environmental health hazards. Subsequently, fly ash found that an exceptional adsorption performance for the removal of various toxic pollutants, the adsorption capacity of fly ash might be altered by introducing physical/chemical stimulation. Successfully converting fly ash into zeolites not only recovers their disposal difficulties but also transforms unwanted materials into merchandisable products for various industrial applications.
View Article and Find Full Text PDFSeizure
November 2024
Neuronostics, Bristol, United Kingdom; Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham B15 2TT, United Kingdom; Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom.
Background: Brain network analysis is an emerging field of research that could lead to the development, testing and validation of novel biomarkers for epilepsy. This could shorten the diagnostic uncertainty period, improve treatment, decrease seizure risk and lead to better management. This scoping review summarises the current state of electroencephalogram (EEG)-based network abnormalities for childhood epilepsies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!