Embedding dual function into molecular motors through collective motion.

Sci Rep

Universal Biology Institute, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.

Published: March 2017

Protein motors, such as kinesins and dyneins, bind to a microtubule and travel along it in a specific direction. Previously, it was thought that the directionality for a given motor was constant in the absence of an external force. However, the directionality of the kinesin-5 Cin8 was recently found to change as the number of motors that bind to the same microtubule is increased. Here, we introduce a simple mechanical model of a microtubule-sliding assay in which multiple motors interact with the filament. We show that, due to the collective phenomenon, the directionality of the motor changes (e.g., from minus- to plus- end directionality), depending on the number of motors. This is induced by a large diffusive component in the directional walk and by the subsequent frustrated motor configuration, in which multiple motors pull the filament in opposite directions, similar to a game of tug-of-war. A possible role of the dual-directional motors for the mitotic spindle formation is also discussed. Our framework provides a general mechanism to embed two conflicting tasks into a single molecular machine, which works context-dependently.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5345074PMC
http://dx.doi.org/10.1038/srep44288DOI Listing

Publication Analysis

Top Keywords

bind microtubule
8
directionality motor
8
number motors
8
multiple motors
8
motors
7
embedding dual
4
dual function
4
function molecular
4
molecular motors
4
motors collective
4

Similar Publications

Microtubules are dynamic cytoskeletal structures essential for cell architecture, cellular transport, cell motility, and cell division. Due to their dynamic nature, known as dynamic instability, microtubules can spontaneously switch between phases of growth and shortening. Disruptions in microtubule functions have been implicated in several diseases, including cancer, neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and birth defects.

View Article and Find Full Text PDF

Kinetochores get a grip!

J Cell Biol

January 2025

Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany.

A new study by Larson and colleagues (2025. J. Cell Biol.

View Article and Find Full Text PDF

The Plant Retromer Components SNXs Bind to ATG8 and CLASP to Mediate Autophagosome Movement along Microtubules.

Mol Plant

December 2024

Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China. Electronic address:

In eukaryotic cells, autophagosomes are double-membrane vesicles that are highly mobile and traffic along cytoskeletal tracks. While core autophagy-related proteins (ATGs) and other regulators involved in autophagosome biogenesis in plants have been extensively studied, the specific components regulating plant autophagosome motility remain elusive. In this study, using TurboID-based proximity labelling, we identify the retromer subcomplex comprising sorting nexin 1 (SNX1), SNX2a, and SNX2b as interacting partners of ATG8.

View Article and Find Full Text PDF

Primary cilia as antennas for oxygen.

Am J Physiol Cell Physiol

December 2024

Institute of Physiology, University Duisburg-Essen, Essen, Germany.

Over the last few decades, the primary cilium, an inconspicuous cell organelle, has increasingly become the focus of current research. The primary cilium is a microtubule-based, non-motile, antenna-like structure that is present on almost all mammalian cells. The ciliary membrane incorporates a large number of receptor molecules, which further characterize this cellular organelle.

View Article and Find Full Text PDF

Fusion circRNA F-circEA1 facilitates EML4-ALK1 positive lung adenocarcinoma progression through the miR-4673/SMAD4/ADAR1 axis.

Cell Signal

December 2024

Department of Respiratory Medicine, Jinling Hospital, Nanjing Medical University, Jiangsu Province, China. Electronic address:

Circular RNA (circRNA) can sponge miRNA participate in the tumorigenesis and progression of various cancers. We substantiate for the first time that the fusion circular RNA (F-circRNA) F-circEA1 is involved in driving the echinoderm microtubule associated-protein like 4-anaplastic lymphoma kinase variant 1-positive (EML4-ALK1) lung adenocarcinoma (LUAD) progression and the expression of the parental gene EML4-ALK1, molecular mechanisms of F-circEA1 in the EML4-ALK1 LUAD remain unknown. Bioinformatics analysis showed that only miR-4673 can bind to F-circEA1 and bind to EML4-ALK1 3'-UTR to regulate the expression of EML4-ALK1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!