Mode-locked fibre laser as a dissipative system is characterized by rich forms of soliton interaction, which take place via internal energy exchange through noisy background in the presence of dispersion and nonlinearity. The result of soliton interaction was either stationary-localized or chaotically-oscillated soliton complexes, which have been shown before as stand-alone in the cavity. Here we report on a new form of solitons complex observed in Bi-doped mode-locked fibre laser operated at 1450 nm. The solitons are arranged in two different group types contemporizing in the cavity: one pulse group propagates as bound solitons with fixed phase relation and interpulse position eventuated in 30 dB spectrum modulation depth; while the other pulses form a bunch with continuously and chaotically moving solitons. The article describes both experimental and theoretical considerations of this effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5345058PMC
http://dx.doi.org/10.1038/srep44194DOI Listing

Publication Analysis

Top Keywords

fibre laser
12
laser operated
8
operated 1450 nm
8
mode-locked fibre
8
soliton interaction
8
solitons
5
infiltrated bunch
4
bunch solitons
4
solitons bi-doped
4
bi-doped frequency-shifted
4

Similar Publications

With rapid, energy-intensive, and coal-fueled economic growth, global air quality is deteriorating, and particulate matter pollution has emerged as one of the major public health problems worldwide. It is extremely urgent to achieve carbon emission reduction and air pollution prevention and control, aiming at the common problem of weak and unstable signals of characteristic elements in the application of laser-induced breakdown spectroscopy (LIBS) technology for trace element detection. In this study, the influence of the optical fiber collimation signal enhancement method on the LIBS signal was explored.

View Article and Find Full Text PDF

Femtosecond lasers represent a novel tool for tattoo removal as sources that can be operated at high power, potentially leading to different removal pathways and products. Consequently, the potential toxicity of its application also needs to be evaluated. In this framework, we present a comparative study of Ti:Sapphire femtosecond laser irradiation, as a function of laser power and exposure time, on water dispersions of Pigment Green 7 (PG7) and the green tattoo ink Green Concentrate (GC), which contains PG7 as its coloring agent.

View Article and Find Full Text PDF

Background: The present study aims to identify the relationship between longitudinal changes in corneal hysteresis (CH) and progressive retinal nerve fibre layer (RNFL) thinning in a cohort of medically controlled, early-to-moderate open-angle glaucoma (OAG) patients with a history of laser refractive surgery (LRS).

Methods: A total of 123 consecutive eyes with a diagnosis of medically controlled (peak intraocular pressure (IOP)<18 mm Hg), early-to-moderate OAG with a history of LRS underwent measurements of CH, corneal-compensated intraocular pressure (IOPcc) and RNFL thicknesses every 6 months. Linear models were used to investigate the relationship between CH change and RNFL thickness change over time.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to evaluate the effectiveness of antimicrobial photodynamic therapy (aPDT) combined with mechanical debridement (MD) in treating peri-implantitis in patients undergoing chemotherapy compared to systemically healthy patients.
  • Both patient groups were assessed; however, results showed no significant differences in key measurements (plaque and gingival indices, probing depth, and bone loss) between the two groups at both baseline and three-month follow-up.
  • Overall, the findings indicated that adding aPDT to MD did not lead to enhanced treatment outcomes for peri-implantitis in either chemotherapy patients or systemically healthy individuals.
View Article and Find Full Text PDF

In the last decade, substantial progress has been made to improve the performance of optical gyroscopes for inertial navigation applications in terms of critical parameters such as bias stability, scale factor stability, and angular random walk (ARW). Specifically, resonant fiber optic gyroscopes (RFOGs) have emerged as a viable alternative to widely popular interferometric fiber optic gyroscopes (IFOGs). In a conventional RFOG, a single-wavelength laser source is used to generate counter-propagating waves in a ring resonator, for which the phase difference is measured in terms of the resonant frequency shift to obtain the rotation rate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!