The crystallization behavior of a glass with the composition 54.7 SiO·10.9 AlO·15.0 MgO·3.4 ZrO·16.0 YO is studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) including electron backscatter diffraction (EBSD) and (scanning) transmission electron microscopy [(S)TEM] including energy-dispersive X-ray spectrometry (EDXS). This glass shows the sole surface crystallization of four different yttrium silicates of the composition YSiO (YS). The almost simultaneous but independent nucleation of α-, β-, δ-, and ε-YS at the surface is followed by growth into the bulk, where ε-YS quickly dominates a first crystallized layer. An accumulation of Mg at the growth front probably triggers a secondary nucleation of β-YS, which forms a thin compact layer before fragmenting into a highly oriented layer of fine grained crystals occupying the remaining bulk. The residual glass between the YS growth structures allows the crystallization of indialite, yttrium stabilized ZrO (Y-ZrO) and very probably μ-cordierite during cooling. Hence, this glass basically shows the inverted order of crystallization observed in other magnesium yttrium alumosilicate glasses containing less YO. An epitaxial relationship between Y-ZrO and ε-YS is proven and multiple twinning relationships occur in the YS phases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5345062 | PMC |
http://dx.doi.org/10.1038/srep44144 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
In recent years, aqueous zinc-ion batteries (ZIBs) have shown considerable promise in the energy storage sector, attributed to their inherent high safety and cost-effectiveness. ZnVO(OH)·2HO (ZVO) has emerged as a promising candidate for Zn storage in recent years, owing to its exceptional structural stability that endows it with an excellent cycle life. However, an unsatisfactory rate performance is a limiting factor for its development in ZIBs.
View Article and Find Full Text PDFNano Lett
January 2025
Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P.R. China.
Crystals with three-dimensional (3D) stereoscopic structures, characterized by diverse shapes, crystallographic planes, and morphologies, represent a significant advancement in catalysis. Differentiating and quantifying the catalytic activity of specific surface facets and sites at the single-particle level is essential for understanding and predicting catalytic performance. This study employs super-resolution radial fluctuations electrogenerated chemiluminescence microscopy (SRRF-ECLM) to achieve high-resolution mapping of electrocatalytic activity on individual 3D CuO crystals, including cubic, octahedral, and truncated octahedral structures.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Inorganic Chemistry, Shahid Beheshti University, 1983969411, Tehran, Iran.
In a systematic study, six pseudopolymorphic coordination polymers containing the ditopic 1,3-di(pyridin-4-yl)urea ligand (4bpu) constructed with d metal cations, possessing the formula {[M(4bpu)I]S} [(M = Zn, Cd and Hg), (S = MeOH or EtOH)], namely Zn-MeOH, Zn-EtOH, Cd-MeOH, Cd-EtOH, Hg- and Hg-EtOH were obtained. The title compounds were characterized by single-crystal X-ray diffraction analysis (SC-XRD), elemental analysis (CHN), FT-IR spectroscopy, thermogravimetric analysis (TGA), and powder X-ray diffraction (PXRD). The diffraction studies show that these compounds are isostructural 1D zig-zag chain coordination polymers which is also confirmed using XPac 2.
View Article and Find Full Text PDFSoft Matter
January 2025
Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain.
The effect of gravity on the collective motion of living microswimmers, such as bacteria and micro-algae, is pivotal to unravel not only bio-convection patterns but also the settling of bacterial biofilms on solid surfaces. In this work, we investigate suspensions of microswimmers under the influence of a gravitational field and hydrodynamics, simulated the dissipative particle dynamics (DPD) coarse-grained model. We first study the collective sedimentation of passive colloids and microswimmers of the puller and pusher types upon increasing the imposed gravitational field and compare them with previous results.
View Article and Find Full Text PDFJ Oral Microbiol
January 2025
Periodontal Research Group, Department of Dentistry, School of Health Sciences, College of Medicine and Health, University of Birmingham, Edgbaston, UK.
Background: is a commensal bacterium and an early biofilm coloniser found in the human oral cavity. One of the biofilm matrix constituents is bacterial extracellular DNA (eDNA). Neutrophils are innate immune cells that respond to biofilms, employing antimicrobial mechanisms such as neutrophil extracellular trap (NET) and reactive oxygen species (ROS) release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!