High mobility group box 1 (HMGB1) is a critical pro-inflammatory cytokine that contributes to the pathogenesis of various human diseases. FLZ, a squamosamide derivative, has been demonstrated to have neuroprotective effects in Parkinson's disease models and shows strong anti-inflammatory activity, while the precise mechanism remains unclear. Here, we investigated the anti-inflammatory mechanism of FLZ on HMGB1-mediated inflammatory responses. The effects of FLZ on HMGB1 release from microglial cells induced by lipopolysaccharide were first explored by Western blot assay and ELISA. Then, co-immunoprecipition was used to study FLZ's effect on the interaction between HMGB1 and its receptor TLR4. Finally, we employed HMGB1 to simulate pro-inflammatory responses and then studied the inhibitory effects of FLZ on its bioactivity. FLZ has a significant inhibitory effect on HMGB1 release while it exerts no inhibitory effect on the binding between HMGB1 and TLR4. After the recognition of HMGB1 by TLR4, NF-κB signaling pathway is activated. FLZ could efficaciously alleviate HMGB1-induced inflammatory responses via the suppression of TLR4/MyD88/NF-κB signaling pathway. FLZ could inhibit HMGB1 release as well as HMGB1-induced inflammatory responses, HMGB1 might be one of the FLZ anti-inflammatory targets, and interfering at this inflammatory mediator may have benefit effects on neurodegenerative disorders, such as Parkinson's disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00210-017-1363-6 | DOI Listing |
Pulmonology
December 2025
Laboratory of Experimental Therapeutics, LIM-20, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil.
Background: Chronic obstructive pulmonary disease (COPD) induces an imbalance in T helper (Th) 17/regulatory T (Treg) cells that contributes to of the dysregulation of inflammation. Exercise training can modulate the immune response in healthy subjects.
Objective: We aimed to evaluate the effects of exercise training on Th17/Treg responses and the differentiation of Treg phenotypes in individuals with COPD.
Adv Healthc Mater
January 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.
View Article and Find Full Text PDFPhytother Res
January 2025
School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.
Atopic dermatitis (AD) is a common inflammatory dermatitis of the skin and poses therapeutic challenges due to the adverse reactions and high costs associated with available treatments. In Eastern Asian countries, a plethora of herbal remedies is extensively employed for the alleviation of AD. Many of these botanicals are renowned for their formidable anti-inflammatory properties, contributing to AD management.
View Article and Find Full Text PDFBiomol Biomed
December 2024
Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
Severe acute pancreatitis (SAP) is one of the leading causes of hospital admissions for gastrointestinal diseases, with a rising incidence worldwide. Intestinal microbiota dysbiosis caused by SAP exacerbates systemic inflammatory response syndrome and organ dysfunction. Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic option for gastrointestinal diseases.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Systems Pharmacology and Translational Therapeutics Laboratory, The Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy.
Inflammation plays a critical role in the pathogenesis of various diseases by promoting the acquisition of new functional traits by different cell types. Shared risk factors between cardiovascular disease and cancer, including smoking, obesity, diabetes, high-fat diet, low physical activity, and alcohol consumption, contribute to inflammation linked to platelet activation. Platelets contribute to an inflammatory state by activating various normal cells, such as fibroblasts, immune cells, and vascular cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!