Variable Colonization after Reciprocal Fecal Microbiota Transfer between Mice with Low and High Richness Microbiota.

Front Microbiol

University of Missouri Metagenomics Center, University of MissouriColumbia, MO, USA; University of Missouri Mutant Mouse Resource and Research Center, University of MissouriColumbia, MO, USA; Comparative Metagenomics Laboratory, Department of Veterinary Pathobiology, University of MissouriColumbia, MO, USA.

Published: February 2017

Several associations have been made between characteristics of the resident gut microbiota and human health and disease susceptibility. Animal models provide the means to test these correlations prospectively and evaluate causality. Experimental fecal microbiota transfer (FMT), or the intentional transplantation of gut microbes into recipient mice depleted of their autochthonous microbes with antibiotics, is a commonly used method of testing these relationships. The true completeness of microbial transfer through such procedures is poorly documented in the literature, particularly in the context of reciprocal transfer of microbes between recipient and donor mice harboring microbial populations of differing richness and diversity. Moreover, it is unclear whether the use of frozen fecal contents or cecal contents would confer any difference in the outcomes of transfer. Herein, groups of mice colonized with distinct gut microbiota of differing richness and composition were used in a reciprocal FMT study, with different groups receiving transfer of material prepared from fresh cecal contents, fresh feces, or frozen feces. Targeted 16S rRNA gene amplicon sequencing was used at intervals throughout the study to characterize the microbiota. Notably, despite comparable depletion of the microbiota in recipient mice prior to transfer, donor-specific taxa reliably colonized recipients only when relatively rich donor material was transferred to mice originally colonized with a simpler microbiota. It is unclear whether these differences were due to differences in the endogenous recipient microbiota or host factors induced in early life by microbial factors. These findings are of practical import for researchers using FMT to prospectively assess the influence of the gut microbiota in mouse models, and to those studying host-microbial interactions and their influence on gut barrier function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5322181PMC
http://dx.doi.org/10.3389/fmicb.2017.00196DOI Listing

Publication Analysis

Top Keywords

gut microbiota
12
microbiota
10
fecal microbiota
8
microbiota transfer
8
microbes recipient
8
recipient mice
8
differing richness
8
cecal contents
8
influence gut
8
transfer
7

Similar Publications

Nonalcoholic fatty liver disease (NAFLD) represents an increasing public health concern. The underlying pathophysiological mechanisms of NAFLD remains unclear, and as a result, there is currently no specific therapy for this condition. However, recent studies focus on extracellular vesicles (EVs) as a novelty in their role in cellular communication.

View Article and Find Full Text PDF

The mammalian gut microbiome is a dense and diverse community of microorganisms that reside in the distal gastrointestinal tract. In recent decades, the bacterial members of the gut microbiome have been the subject of intense research. Less well studied is the large community of bacteriophages that reside in the gut, which number in the billions of viral particles per gram of feces, and consist of considerable unknown viral "dark matter.

View Article and Find Full Text PDF

Microbiota dysfunction induces intestinal disorders and neurological diseases. Mannuronate oligosaccharides (MAOS), a kind of alginate oligosaccharide (AOS), specifically exert efficacy in shaping gut microbiota and relieving cognitive impairment. However, the key regulatory factors involved, such as the specific strains and metabolites as well as their regulatory mechanisms, remain unclear at present.

View Article and Find Full Text PDF

Impact of Ex Vivo Bisphenol A Exposure on Gut Microbiota Dysbiosis and Its Association with Childhood Obesity.

J Xenobiot

January 2025

Human Microbiota Laboratory, Institute of Nutrition and Food Technology "José Mataix" (INYTA), Centre of Biomedical Research, University of Granada, 18016 Granada, Spain.

Dietary exposure to the plasticiser bisphenol A (BPA), an obesogenic and endocrine disruptor from plastic and epoxy resin industries, remains prevalent despite regulatory restriction and food safety efforts. BPA can be accumulated in humans and animals, potentially exerting differential health effects based on individual metabolic capacity. This pilot study examines the impact of direct ex vivo BPA exposure on the gut microbiota of obese and normal-weight children, using 16S rRNA amplicon sequencing and anaerobic culturing combined methods.

View Article and Find Full Text PDF

Single and Synergistic Effects of Microplastics and Difenoconazole on Oxidative Stress, Transcriptome, and Microbiome Traits in Honey Bees.

J Agric Food Chem

January 2025

Plant Protection Research Institute, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, PR China.

Microplastics (MPs) and pesticides are identified as two environmental pollutants. In the present study, we showed evidence of toxic effects on honey bees from chronic oral exposure to food containing difenoconazole alone (Dif) and in a binary mixture with polystyrene (PS)-MPs (Dif + PS). We observed a disrupted gut microbial community structure in bees after difenoconazole exposure, and the gut microbiota structure richness increased at the phylum and genus levels in Dif + PS group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!