Performance of different Sporomusa species for the microbial electrosynthesis of acetate from carbon dioxide.

Bioresour Technol

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark; School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China. Electronic address:

Published: June 2017

Sporomusa ovata DSM-2662 produces high rate of acetate during microbial electrosynthesis (MES) by reducing CO with electrons coming from a cathode. Here, we investigated other Sporomusa for MES with cathode potential set at -690mVvsSHE to establish if this capacity is conserved among this genus and to identify more performant strains. S. ovata DSM-2663 produced acetate 1.8-fold faster than S. ovata DSM-2662. On the contrary, S. ovata DSM-3300 was 2.7-fold slower whereas Sporomusa aerivorans had no MES activity. These results indicate that MES performance varies among Sporomusa. During MES, electron transfer from cathode to microbes often occurs via H. To establish if efficient coupling between H oxidation and CO reduction may explain why specific acetogens are more productive MES catalysts, the metabolisms of the investigated Sporomusa were characterized under H:CO. Results suggest that other phenotypic traits besides the capacity to oxidize H efficiently are involved.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2017.02.128DOI Listing

Publication Analysis

Top Keywords

microbial electrosynthesis
8
ovata dsm-2662
8
investigated sporomusa
8
sporomusa mes
8
mes
6
sporomusa
5
performance sporomusa
4
sporomusa species
4
species microbial
4
electrosynthesis acetate
4

Similar Publications

An efficient electrocatalytic in-situ hydrogen peroxide generation for ballast water treatment with oxygen groups.

Sci Total Environ

January 2025

Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.

The in-situ electrochemical production of hydrogen peroxide (HO) offers a promising approach for ballast water treatment. However, further advancements are required to develop electrocatalysts capable of achieving efficient HO generation in seawater environments. Herein, we synthesized two-dimensional lamellated porous carbon nanosheets enriched with oxygen functional groups, which exhibited exceptional performance in HO electrosynthesis.

View Article and Find Full Text PDF

The emergence of single-atom catalysts offers exciting prospects for the green production of hydrogen peroxide; however, their optimal local structure and the underlying structure-activity relationships remain unclear. Here we show trace Fe, up to 278 mg/kg and derived from microbial protein, serve as precursors to synthesize a variety of Fe single-atom catalysts containing FeNO (1 ≤ x ≤ 4) moieties through controlled pyrolysis. These moieties resemble the structural features of nonheme Fe-dependent enzymes while being effectively confined on a microbe-derived, electrically conductive carbon support, enabling high-current density electrolysis.

View Article and Find Full Text PDF

Acetogenic bacteria play an important role in various biotechnological processes, because of their chemolithoautotrophic metabolism converting carbon dioxide with molecular hydrogen (H) as electron donor into acetate. As the main factor limiting acetogenesis is often H, insights into the H consumption kinetics of acetogens are required to assess their potential in biotechnological processes. In this study, initial H consumption rates at a range of different initial H concentrations were measured for three different acetogens.

View Article and Find Full Text PDF

Purple non-sulfur bacteria for biotechnological applications.

J Ind Microbiol Biotechnol

December 2024

Department of Biology, Washington University in St. Louis, St. Louis, MO, USA.

Unlabelled: In this review, we focus on how purple non-sulfur bacteria can be leveraged for sustainable bioproduction to support the circular economy. We discuss the state of the field with respect to the use of purple bacteria for energy production, their role in wastewater treatment, as a fertilizer, and as a chassis for bioplastic production. We explore their ability to serve as single-cell protein and production platforms for fine chemicals from waste materials.

View Article and Find Full Text PDF

Utilizing (), this study constructed a dual-chamber microbial electrosynthesis system, based on microbial electrolysis cells, that was capable of producing lycopene. Cultivation within the electrosynthesis chamber yielded a lycopene concentration of 282.3722 mg/L when the optical density (OD) reached 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!