We propose a novel learning-based approach to detect an imperceptible hand-held needle in ultrasound images using the natural tremor motion. The minute tremor induced on the needle however is also transferred to the tissue in contact with the needle, making the accurate needle detection a challenging task. The proposed learning-based framework is based on temporal analysis of the phase variations of pixels to classify them according to the motion characteristics. In addition to the classification, we also obtain a probability map of the segmented pixels by cross-validation. A Hough transform is then used on the probability map to localize the needle using the segmented needle and posterior probability estimate. The two-step probability-weighted localization on the segmented needle in a learning framework is the key innovation which results in localization improvement and adaptability to specific clinical applications. The method was tested in vivo for a standard 17 gauge needle inserted at 50-80° insertion angles and 40-60mm depths. The results showed an average accuracy of (2.12°, 1.69mm) and 81%±4% for localization and classification, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2017.02.010DOI Listing

Publication Analysis

Top Keywords

needle
9
needle ultrasound
8
probability map
8
segmented needle
8
detection invisible
4
invisible needle
4
ultrasound probabilistic
4
probabilistic svm
4
svm time-domain
4
time-domain features
4

Similar Publications

Electrospinning can be used to prepare membranes with characteristics for biomedical application. In this work, the electrospinning conditions for the fabrication of membranes based on polymers extracted from natural sources such as chitosan and collagen were optimized (injection flow, injection volume, distance from the collector to the neddle, needle size and voltage). Specifically, four formulations were prepared with pure chitosan and mixtures of collagen (purified or hydrolyzed) and agarose.

View Article and Find Full Text PDF

Introduction: Prompt treatment with IV thrombolytics (IVT) in acute ischemic stroke (AIS) patients is critical for improved recovery and survival. Recently, hospital systems have switched to the IVT tenecteplase (TNK) instead of the FDA-approved alteplase (tPA) for treatment. Multiple studies and meta-analyses evaluating the efficacy and safety of TNK demonstrate similar or superior outcomes when compared to tPA.

View Article and Find Full Text PDF

Primary hyperparathyroidism (PHPT) is a prevalent clinical condition characterized by an inappropriate secretion of parathyroid hormone (PTH). It is most often caused by one or more parathyroid adenomas, which can, in rare cases, be ectopically located. Ectopic adenomas can pose a diagnostic challenge, lead to treatment delay, and be a common cause of recurrent hypercalcemia after parathyroidectomy.

View Article and Find Full Text PDF

Microbial communities in the phyllosphere and endosphere of Norway spruce under attack by .

Front Microbiol

January 2025

Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.

species complex has been regarded as the most destructive disease agent of conifer trees in boreal forests. Tree microbiome can regulate the plant-pathogen interactions by influencing both host resistance and pathogen virulence. Such information would help to improve the future health of forests and explore strategies to enhance ecosystem stability.

View Article and Find Full Text PDF

Objective And Rationale: Children's clinical pain phenotypes are complex, and there is a lack of objective biological diagnostic markers and cognitive patterns. Detecting physiological signals through wearable devices simplifies disease diagnosis and holds the potential for remote medical applications.

Method And Results: This research established a pain recognition model based on AI skin potential (SP) signal analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!