Controlling microarchitecture in polymer scaffolds is a priority in material design for soft tissue applications. This paper reports for the first time the elaboration of alginate foam-based scaffolds for mesenchymal stem cell (MSC) delivery and a comparative study of various surfactants on the final device performance. The use of surfactants permitted to obtain highly interconnected porous scaffolds with tunable pore size on surface and in cross-section. Their mechanical properties in compression appeared to be adapted to soft tissue engineering. Scaffold structures could sustain MSC proliferation over 14 days. Paracrine activity of scaffold-seeded MSCs varied with the scaffold structure and growth factors release was globally improved in comparison with control alginate scaffolds. Our results provide evidence that exploiting different surfactant types for alginate foam preparation could be an original method to obtain biocompatible scaffolds with tunable architecture for soft tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2017.02.060DOI Listing

Publication Analysis

Top Keywords

soft tissue
16
tissue engineering
12
alginate foam
8
scaffolds tunable
8
scaffolds
6
elaboration evaluation
4
alginate
4
evaluation alginate
4
foam scaffolds
4
soft
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!