We successfully isolated Rhodococcus sp. D-1, an efficient carbendazim-degrading bacterium that degraded 98.20% carbendazim (200ppm) within 5days. Carbendazim was first processed into 2-aminobenzimidazole, converted to 2-hydroxybenzimidazole, and then further mineralized by subsequent processing. After genomic analysis, we hypothesized that D-1 may express a new kind of enzyme capable of hydrolyzing carbendazim. In addition, the effect of the biodegradable biosurfactant rhamnolipid on the rate and extent of carbendazim degradation was assessed in batch analyses. Notably, rhamnolipid affected carbendazim biodegradation in a concentration-dependent manner with maximum biodegradation efficiency at 50ppm (at the critical micelle concentration, CMC) (97.33% degradation within 2days), whereas 150ppm (3 CMC) rhamnolipid inhibited initial degradation (0.01%, 99.26% degradation within 2 and 5days, respectively). Both carbendazim emulsification and favorable changes in cell surface characteristics likely facilitated its direct uptake and subsequent biodegradation. Moreover, rhamnolipid facilitated carbendazim detoxification. Collectively, these results offer preliminary guidelines for the biological removal of carbendazim from the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2017.03.025 | DOI Listing |
Microorganisms
November 2024
Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
Mulberry is an important economic crop in China that is widely planted and has important edible and medicinal value. Anthracnose, a critical leaf disease, severely compromises the yield and quality of mulberry trees. However, there are many kinds of pathogens causing mulberry anthracnose and it is difficult to control.
View Article and Find Full Text PDFLife (Basel)
November 2024
CHEMBIOPRO Lab, Chimie et Biotechnologie des Produits Naturels, ESIROI Agroalimentaire, Université of Réunion Island, 97400 Saint-Denis, France.
Pokkah Boeng disease has been observed in nearly all countries where sugarcane is commercially cultivated. The disease was considered a minor concern in earlier times, but due to climate change, it has now become a major issue. It is caused by fungi, specifically the fungal complex.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Department of Pesticide Science, College of Plant Protection, Shenyang Agricultural University, Shenyang, China.
Background: Botrytis cinerea is one of the most serious plant diseases and severely threatens agricultural production. The rapidly intensifying resistance makes most commercial chemical fungicides lose control efficacy. Developing new fungicides with novel structures and modes of action is an effective measure to solve this problem.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China. Electronic address:
The proliferation of weeds, pests, and plant diseases in crop cultivation has driven the increased application of herbicide lactofen, insecticide acetamiprid, and fungicide carbendazim, contributing to environmental pollution. Microorganisms are requently employed to remove pesticide residues from the environment. However, Liquid bacterial agents encounter difficulties in transportation and preservation during application and the current immobilized bacterial agents have a single degradation function.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Chemical control of head blight (FHB) in wheat plants is often challenged by the resistance outbreak and deoxynivalenol (DON) accumulation. Developing green partners for fungicides is crucial for reducing fungal growth, mycotoxin contamination, and agricultural fungicides input. Herein, we investigated the mechanism of MgO nanoparticles (NPs) in controlling FHB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!