We present here in silico studies on antiviral drug resistance due to a novel mutation of influenza A/H1N1 neuraminidase (NA) protein. Influenza A/H1N1 virus was responsible for a recent pandemic and is currently circulating among the seasonal influenza strains. M2 and NA are the two major viral proteins related to pathogenesis in humans and have been targeted for drug designing. Among them, NA is preferred because the ligand-binding site of NA is highly conserved between different strains of influenza virus. Different mutations of the NA active site residues leading to drug resistance or susceptibility of the virus were studied earlier. We report here a novel mutation (S247R) in the NA protein that was sequenced earlier from the nasopharyngeal swab from Sri Lanka and Thailand in the year 2009 and 2011, respectively. Another mutation (S247N) was already known to confer resistance to oseltamivir. We did a comparative study of these two mutations vis-a-vis the drug-sensitive wild type NA to understand the mechanism of drug resistance of S247N and to predict the probability of the novel S247R mutation to become resistant to the currently available drugs, oseltamivir and zanamivir. We performed molecular docking- and molecular dynamics-based analysis of both the mutant proteins and showed that mutation of S247R affects drug binding to the protein by positional displacement due to altered active site cavity architecture, which in turn reduces the affinity of the drug molecules to the NA active site. Our analysis shows that S247R may have high probability of being resistant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2017.1305295 | DOI Listing |
NPJ Antimicrob Resist
August 2024
Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK.
Multidrug efflux pumps have been found to play a crucial role in drug resistance in bacteria and eukaryotes. In this study, we investigated the presence of functional multidrug and toxic compound extrusion (MATE) efflux pumps, inferred from whole genome sequencing, in the halophilic archaeon Halorubrum amylolyticum CSM52 using Hoechst 33342 dye accumulation and antimicrobial sensitivity tests in the presence and absence of efflux pump inhibitors (EPIs). The whole genome sequence of H.
View Article and Find Full Text PDFNPJ Antimicrob Resist
December 2024
Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, Leuven, Belgium.
Exploring the dynamics and molecular mechanisms of antimicrobial drug resistance provides critical insights for developing effective strategies to combat it. This review highlights the potential of experimental evolution methods to study resistance in pathogenic fungi, drawing on insights from bacteriology and innovative approaches in mycology. We emphasize the versatility of experimental evolution in replicating clinical and environmental scenarios and propose that incorporating evolutionary modelling can enhance our understanding of antifungal resistance evolution.
View Article and Find Full Text PDFNPJ Antimicrob Resist
January 2025
Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
Ceftazidime-avibactam (CZA) is currently one of the last resorts used to treat infections caused by carbapenem-resistant Enterobacteriaceae and Pseudomonas aeruginosa. However, KPC variants have become the main mechanism mediating CZA resistance in KPC-producing gram-negative bacteria after increasing the application of CZA. Our previous study revealed that CZA-resistant KPC-33 had emerged in carbapenem-resistant P.
View Article and Find Full Text PDFNPJ Antimicrob Resist
February 2024
National Heart and Lung Institute, Imperial College London, London, UK.
Antimicrobial peptides (AMPs) are key components of innate immunity across all domains of life. Natural and synthetic AMPs are receiving renewed attention in efforts to combat the antimicrobial resistance (AMR) crisis and the loss of antibiotic efficacy. The gram-negative pathogen Pseudomonas aeruginosa is one of the most concerning infecting bacteria in AMR, particularly in people with cystic fibrosis (CF) where respiratory infections are difficult to eradicate and associated with increased morbidity and mortality.
View Article and Find Full Text PDFNPJ Antimicrob Resist
October 2024
HCEMM-BRC Pharmacodynamic Drug Interaction Research Group, Szeged, Hungary.
While the rise of antibiotic resistance poses a global health challenge, the development of new antibiotics has slowed down over the past decades. This turned the attention of researchers towards the rational design of drug combination therapies to combat antibiotic resistance. In this review we discuss how drug combinations can exploit the deleterious pleiotropic effects of antibiotic resistance and conclude that each drug interaction has its prospective therapeutic application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!