Determining the minimal sequence necessary to induce protein folding is beneficial in understanding the role of protein-protein interactions in biological systems, as their three-dimensional structures often dictate their activity. Proteins are generally comprised of discrete secondary structures, from α-helices to β-turns and larger β-sheets, each of which is influenced by its primary structure. Manipulating the sequence of short, moderately helical peptides can help elucidate the influences on folding. We created two new scaffolds based on a modestly helical eight-residue peptide, PT3, we previously published. Using circular dichroism (CD) spectroscopy and changing the possible salt-bridging residues to new combinations of Lys, Arg, Glu, and Asp, we found that our most helical improvements came from the Arg-Glu combination, whereas the Lys-Asp was not significantly different from the Lys-Glu of the parent scaffold, PT3. The marked 3-helical contributions in PT3 were lessened in the Arg-Glu-containing peptide with the beginning of cooperative unfolding seen through a thermal denaturation. However, a unique and unexpected signature was seen for the denaturation of the Lys-Asp peptide which could help elucidate the stages of folding between the 3 and α-helix. In addition, we developed a short six-residue peptide with β-turn/sheet CD signature, again to help study minimal sequences needed for folding. Overall, the results indicate that improvements made to short peptide scaffolds by fine-tuning the salt-bridging residues can enhance scaffold structure. Likewise, with the results from the new, short β-turn motif, these can help impact future peptidomimetic designs in creating biologically useful, short, structured β-sheet-forming peptides.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2017.1286265DOI Listing

Publication Analysis

Top Keywords

help elucidate
8
salt-bridging residues
8
short
7
peptide
5
salt-bridging effects
4
effects short
4
short amphiphilic
4
helical
4
amphiphilic helical
4
helical structure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!