For many voltage-gated ion channels (VGICs), creation of a properly functioning ion channel requires the formation of specific protein-protein interactions between the transmembrane pore-forming subunits and cystoplasmic accessory subunits. Despite the importance of such protein-protein interactions in VGIC function and assembly, their potential as sites for VGIC modulator development has been largely overlooked. Here, we develop meta-xylyl (m-xylyl) stapled peptides that target a prototypic VGIC high affinity protein-protein interaction, the interaction between the voltage-gated calcium channel (Ca) pore-forming subunit α-interaction domain (AID) and cytoplasmic β-subunit (Caβ). We show using circular dichroism spectroscopy, X-ray crystallography, and isothermal titration calorimetry that the m-xylyl staples enhance AID helix formation are structurally compatible with native-like AID:Caβ interactions and reduce the entropic penalty associated with AID binding to Caβ. Importantly, electrophysiological studies reveal that stapled AID peptides act as effective inhibitors of the Caα:Caβ interaction that modulate Ca function in an Caβ isoform-selective manner. Together, our studies provide a proof-of-concept demonstration of the use of protein-protein interaction inhibitors to control VGIC function and point to strategies for improved AID-based Ca modulator design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5481814 | PMC |
http://dx.doi.org/10.1021/acschemneuro.6b00454 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!