Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently, Injectable Conducting Hydrogel (ICH) systems have gained much attention for tissue engineering and regenerative medicine. These systems can promote the regeneration of tissues responding to electrical responses. In this study, a novel ICH system was introduced. To achieve this system, firstly, a soluble non-toxic polypyrrole (PPy) synthesized by grafting pyrrole on alginate (Alg) backbone (Alg-graft-PPy), and then, ICH systems were prepared by the given ratios of Alg-graft-PPy, Alg, and collagen (Col). Three different amounts of Col (0.5, 1, and 1.5 mg/ml) were added to the system including Alg-graft-PPy: Alg wt. % with the ratios of 20:80 and 30:70. FTIR spectroscopy, electrical conductivity, viscosity, syringeability, gelation time, and MTT assay were performed in order to characterize the produced hydrogels. Due to the rheological behavior of 20:80 (Alg-graft-PPy: Alg wt. %), it was recognized more suitable to inject. Also this system associated with 0.5 mg/ml Col introduced as the best sample with respect to its viscosity and injectability. This ICH system has shown high conductivity in addition to a good level of cell viability and syringeability. With respect to properties of the produced ICH system, it can be applied for bone, nerve, muscle and cardiac cells, which respond to electrical impulses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09205063.2017.1302314 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!