The cyanobacterium Fremyella diplosiphon possesses 3 genes encoding homologs of the tryptophan-rich sensory protein (TSPO). TSPO proteins are membrane proteins implicated in stress responses across a range of organisms from bacteria to humans. Diverse TSPO proteins appear to generally bind tetrapyrrole ligands. Previously, we reported that one of these homologs, FdTSPO1, is involved in salt-, osmotic- and oxidative stress responses in F. diplosiphon. Here, we show distinct regulation of cellular mRNA levels of all 3 FdTSPO homologs by different abiotic stresses. Given the prior finding that all 3 FdTSPO proteins are capable of binding tetrapyrroles of functional relevance in F. diplosiphon and the observation of a ligand-dependent functional role for FdTSPO1 in vivo, FdTSPO1, FdTSPO2, and FdTSPO3 appear to have distinct, yet overlapping, roles in vivo. We propose that these proteins regulate tetrapyrrole homeostasis and/or tetrapyrrole-modulated functions in F. diplosiphon in response to multiple environmental stresses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5399897 | PMC |
http://dx.doi.org/10.1080/15592324.2017.1293221 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!