Skin aging is a complicated physiological process and epigenetic feature, including microRNA-mediated regulation and DNA methylation, have been shown to contribute to this process. DNA methylation is regulated by DNA methyltransferase, of which DNA methyltransferase 1 (DNMT1) is the most abundantly known. But evidence supporting its role in skin aging remains scarce, and no report regards its specifical upstream-regulating molecules in the process of skin aging so far. Here, we found that DNMT1 expression was markedly higher in young human skin fibroblasts (HSFs) than that in passage-aged HSFs, and DNMT1 knockdown significantly induced the senescence phenotype in young HSFs. We predicted the upstream miRNAs which could regulate DNMT1 with miRNA databases and found miR-377 had high homology with a sequence in the 3'-UTR of human DNMT1 mRNA. We confirmed that miR-377 was a potential regulator of DNMT1 by luciferase reporter assays. miR-377 expression in passage-aged HSFs was markedly higher than that in the young HSFs. miR-377 overexpression promoted senescence in young HSFs, and inhibition of miR-377 reduced senescence in passage-aged HSFs. Moreover, these functions were mediated by targeting DNMT1. Microfluidic PCR and next-generation bisulfite sequencing of 24 senescent-associated genes' promoters revealed alterations of the promoter methylation levels of FoxD3, p53, and UTF1 in HSFs treated with miR-377 mimics or inhibitors. We also verified that the miR-377-mediated changes in p53 expression could be reversed by regulation of DNMT1 in HSFs. Similarly, there was a negative correlation between miR-377 and DNMT1 expression in young and photoaged HSFs, HSFs, or skin tissues from UV-unexposed areas of different aged donors. Our results highlight a novel role for miR-377-DNMT1-p53 axis in HSF senescence. These findings shed new light on the mechanisms of skin aging and identify future opportunities for its therapeutic prevention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386568PMC
http://dx.doi.org/10.1038/cddis.2017.75DOI Listing

Publication Analysis

Top Keywords

skin aging
16
dna methyltransferase
12
passage-aged hsfs
12
young hsfs
12
hsfs
11
dnmt1
9
mir-377
8
human skin
8
skin fibroblasts
8
dna methylation
8

Similar Publications

Background: The skin microbiota, a complex community of microorganisms residing on the skin, plays a crucial role in maintaining skin health and overall homeostasis. Recent research has suggested that alterations in the composition and function of the skin microbiota may influence the aging process. However, the causal relationships between specific skin microbiota and biological aging remain unclear.

View Article and Find Full Text PDF

Recent advances in biomarkers for senescence: Bridging basic research to clinic.

Geriatr Gerontol Int

January 2025

Department of Advanced Senotherapeutics and Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.

In this review, we review the current status of biomarkers for aging and possible perspectives on anti-aging or rejuvenation from the standpoint of biomarkers. Aging is observed in all cells and organs, and we focused on research into senescence in the skin, musculoskeletal system, immune system, and cardiovascular system. Commonly used biomarkers include SA-βgal, cell-cycle markers, senescence-associated secretory phenotype (SASP) factors, damage-associated molecular patterns (DAMPs), and DNA-damage-related markers.

View Article and Find Full Text PDF

Pigment particles used in tattooing may exert long terms effect by releasing diffusible degradation products. In the present work, aqueous suspensions of the organic orange diazo pigment PO13 were aged by exposure to simulated sunlight at 40 °C. The morphology and the surface charge of PO13 particles were barely modified upon aging, but primary particles were released by de-agglomeration.

View Article and Find Full Text PDF

Skin aging, characterized by reduced elasticity, wrinkles, and changes in pigmentation, presents significant challenges in the cosmetics industry. Identifying compounds that can help mitigate these effects is crucial to developing effective anti-aging treatments and improving skin health. An advanced analytical approach for identifying skin anti-aging compounds within complex natural mixtures must be developed to achieve this.

View Article and Find Full Text PDF

Natural stilbene compounds, such as resveratrol and pterostilbene, have been focused on owing to their diverse biological activities associated with antioxidant, anti-inflammatory, and anti-aging properties. However, their low water solubility limits their advanced applications. In this study, we investigated the protective effects of selected stilbene compounds (resveratrol, oxyresveratrol, gnetol, piceatannol, and pterostilbene) and their water-soluble derivatives (piceid, resveratrol polysaccharide, pterostilbene trisaccharide, and pterostilbene polysaccharide) against UVA-, UVB irradiation, tertiary-butyl hydroperoxide (t-BuOOH)- and hydrogen peroxide (HO)-induced injury in human epidermal cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!