Soil moisture and organic matter level affects soil respiration and microbial activities, which in turn impact greenhouse gas (GHG) emissions. This study was conducted to evaluate the effect of irrigation levels (75% [deficit], 100% [full], and 125% [excess] of reference crop evapotranspiration requirements), and organic amendments (OA) type (chicken manure [CM] and bone meal [BM]) and OA application rates (0,168, 336 and 672 kg total N ha) on (i) soil physical properties (bulk density, organic matter content and soil moisture content) and (ii) soil carbon dioxide (CO) emissions from a highly weathered tropical Hawai'ian soil. Carbon dioxide readings were consistently taken once or twice a week for the duration of the cropping season. A drip irrigation system was used to apply the appropriate amount of irrigation water to the treatment plots. Treatments were randomly selected and corresponding organic amendments were manually incorporated into the soil. Plots were cultivated with sweet corn (Zea mays 'SS-16'). Soil moisture content within and below the rootzone was monitored using a TDR 300 soil moisture sensor (Spectrum Technologies, Inc., Plainfield, IL, USA) connected with 12 cm long prongs. Soil bulk density and organic matter content were determined at the end of the cropping season. Analysis of variance results revealed that OA type, rate, and their interaction had significant effect on soil CO flux (P < 0.05). Among the OA rates, all CM mostly resulted in significantly higher soil CO fluxes compared to BM and control treatment (p < 0.05). The two highest rates of BM treatment were not significantly different from the control with regard to soil CO flux. In addition, organic amendments affected soil moisture dynamics during the crop growing season and organic matter content measured after the crop harvest. While additional studies are needed to further investigate the effect of irrigation levels on soil CO flux, it is recommended that in order to minimize soil CO emissions, BM soil amendments could be a potential option to reduce soil CO fluxes from agricultural fields similar to the one used in this study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03601234.2017.1292094 | DOI Listing |
J Environ Manage
March 2025
School of Systems Science, Beijing Normal University, Beijing, 100875, China; Institute for Advanced Study in Physics and School of Physics, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, 100875, China. Electronic address:
The Tibetan Plateau (TP) and surrounding regions, vital to global energy and water cycles, are profoundly influenced by climate change and anthropogenic activities. Despite widespread attention to vegetation greening across the region since the 1980s, its underlying mechanisms remain poorly understood. This study employs the eigen microstates method to quantify vegetation greening dynamics using long-term remote sensing and reanalysis data.
View Article and Find Full Text PDFPLoS One
March 2025
Alliance of Biodiversity International and CIAT, ILRI, Addis Ababa, Ethiopia.
Depletion of soil organic matter was found to be the primary biophysical factor causing declining per capita food production in sub-Saharan Africa. The magnitude of this problem was exacerbated by moisture-stress and imbalanced fertilizer application that caused Striga weed infestation. To address such confounded issues, two-year field experiments were conducted to evaluate the effect of residual vermicompost and preceding groundnut on soil fertility, sorghum yield, and Striga density.
View Article and Find Full Text PDFFront Plant Sci
February 2025
Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China.
The drought resistance of rice is an indirect observational and complex trait whose phenotype is reflected in the response of directly observational traits to drought stress. To objectively and accurately evaluate the drought resistance of rice, soil moisture gradient quantification was designed as a general water index among different soil types. Through soil water control, water consumption calculation, yield test, trait examination, and statistical analysis, the relationship between quantitative water control treatment and rice yield drought resistance was studied to establish a quantitative and controllable evaluation system of rice drought resistance.
View Article and Find Full Text PDFGlob Chang Biol
March 2025
School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Future variations of global vegetation are of paramount importance for the socio-ecological systems. However, up to now, it is still difficult to develop an approach to project the global vegetation considering the spatial heterogeneities from vegetation, climate factors, and models. Therefore, this study first proposes a novel model framework named GGMAOC (grid-by-grid; multi-algorithms; optimal combination) to construct an optimal model using six algorithms (i.
View Article and Find Full Text PDFFront Plant Sci
February 2025
Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!