Genomics of apicomplexan parasites.

Crit Rev Biochem Mol Biol

a Program in Molecular Structure and Function , Hospital for Sick Children, Toronto , Ontario , Canada.

Published: June 2017

The increasing prevalence of infections involving intracellular apicomplexan parasites such as Plasmodium, Toxoplasma, and Cryptosporidium (the causative agents of malaria, toxoplasmosis, and cryptosporidiosis, respectively) represent a significant global healthcare burden. Despite their significance, few treatments are available; a situation that is likely to deteriorate with the emergence of new resistant strains of parasites. To lay the foundation for programs of drug discovery and vaccine development, genome sequences for many of these organisms have been generated, together with large-scale expression and proteomic datasets. Comparative analyses of these datasets are beginning to identify the molecular innovations supporting both conserved processes mediating fundamental roles in parasite survival and persistence, as well as lineage-specific adaptations associated with divergent life-cycle strategies. The challenge is how best to exploit these data to derive insights into parasite virulence and identify those genes representing the most amenable targets. In this review, we outline genomic datasets currently available for apicomplexans and discuss biological insights that have emerged as a consequence of their analysis. Of particular interest are systems-based resources, focusing on areas of metabolism and host invasion that are opening up opportunities for discovering new therapeutic targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6813780PMC
http://dx.doi.org/10.1080/10409238.2017.1290043DOI Listing

Publication Analysis

Top Keywords

apicomplexan parasites
8
genomics apicomplexan
4
parasites increasing
4
increasing prevalence
4
prevalence infections
4
infections involving
4
involving intracellular
4
intracellular apicomplexan
4
parasites plasmodium
4
plasmodium toxoplasma
4

Similar Publications

The apicomplexan AP2 (ApiAP2) proteins are the best characterized family of DNA-binding proteins in Plasmodium spp. malaria parasites. Apart from the AP2 DNA-binding domain, there is little sequence similarity between ApiAP2 proteins.

View Article and Find Full Text PDF

The apicomplexan parasite has a complex life cycle. Access to sexual stages and sporozoite-containing oocysts, essential for studying the parasite's environmental transmission, is limited and requires animal experiments with cats. Thus, alternatives and resource-efficient methods are needed.

View Article and Find Full Text PDF

The Ivermectin Related Compound Moxidectin Can Target Apicomplexan Importin α and Limit Growth of Malarial Parasites.

Cells

January 2025

Nuclear Signaling Laboratory, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.

Signal-dependent transport into and out of the nucleus mediated by members of the importin (IMP) superfamily is crucial for eukaryotic function, with inhibitors targeting IMPα being of key interest as anti-infectious agents, including against the apicomplexan species and , causative agents of malaria and toxoplasmosis, respectively. We recently showed that the FDA-approved macrocyclic lactone ivermectin, as well as several other different small molecule inhibitors, can specifically bind to and inhibit and IMPα functions, as well as limit parasite growth. Here we focus on the FDA-approved antiparasitic moxidectin, a structural analogue of ivermectin, for its IMPα-targeting and anti-apicomplexan properties for the first time.

View Article and Find Full Text PDF

A CRISPR view on genetic screens in Toxoplasma gondii.

Curr Opin Microbiol

January 2025

Gulbenkian Institute for Molecular Medicine (GIMM), Avenida Professor Egas Moniz, Lisboa, Portugal. Electronic address:

Genome editing technologies, such as CRISPR-Cas9, have revolutionised the study of genes in a variety of organisms, including unicellular parasites. Today, the CRISPR-Cas9 technology is vastly applied in high-throughput screens to investigate interactions between the Apicomplexan parasite Toxoplasma gondii and its hosts. In vitro and in vivo T.

View Article and Find Full Text PDF

Babesia bigemina is an apicomplexan parasite responsible for causing "Texas fever" in bovines. Current treatments for bovine babesiosis are hindered by several limitations, including toxicity, insufficient efficacy in eliminating the parasite, and the potential for resistance development. A promising approach to overcome these challenges is the identification of compounds that specifically target essential metabolic pathways unique to the parasite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!