Determining and imaging the thermal properties at the nanoscale is a demanding experimental challenge. So far, virtually any techniques used to image nanoscale thermal properties require to position the sample in contact with voluminous probes that act as undesirable thermal sinks and dramatically affect the measurements, in spite of poor interfacial thermal resistivity. Thermoreflectance, a contactless technique in which thermal conductivity is measured by optically probing the heat-induced changes in a sample, is extensively used for measuring the macroscopic and microscopic thermal properties of solids, but, so far, has been limited by diffraction in its applicability at the nanoscale. Here, we present near-field scanning thermoreflectance imaging (NeSTRI), a new scanning probe technique in which an aperture-type near-field optical microscope at sub-wavelength resolution is used to contactlessly determine the thermoreflectance of thin films. As a case study, NeSTRI is here applied to multilayer graphene thin films on glass substrates. Thermal conductivity of micrometre-size multilayer graphene platelets is determined and is consistent with previous macroscopic predictions. We also find that the thermal conductivity is locally higher at specific crystallographic edges of multilayer graphene platelets, which is indicative of the spatial resolution of our method. NeSTRI is uniquely suited to understanding the thermal properties of a large class of nanostructured and nanoscale systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6nr09199g | DOI Listing |
Environ Sci Technol
January 2025
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
Pyrogenic carbons (PCs), with varying structures depending on the materials and thermal treatment conditions, have been extensively used to enhance anaerobic digestion by mediating electron transfer. However, the underlying mechanism has yet to be explored. Herein, the redirection and enhancement of the direct interspecies electron transfer (DIET) pathway were evidenced, along with the upregulated electrochemical properties and structural proteins in the methanogenic consortia.
View Article and Find Full Text PDFBrain Res Bull
January 2025
Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China; Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, PR China. Electronic address:
Diabetic neuropathic pain (DNP) is a common complication of diabetes mellitus (DM) and is characterized by spontaneous pain and neuroinflammation. The Sigma-1 receptor (Sig-1R) has been proposed as a target for analgesic development. It is an important receptor with anti-inflammatory properties and has been found to regulate DNP.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Engineering and Technology, Northeast Forestry University, Harbin 150040, PR China. Electronic address:
The demand for extended shelf life and food safety in the food industry continues to rise. At the same time, the environmental burden of traditional plastic packaging materials is becoming increasingly serious. Therefore, in this study, an intelligent bilayer film with a pH-sensitive inner indicator film based on Artemisia Sphaerocephala Krasch.
View Article and Find Full Text PDFSci Rep
January 2025
College of Engineering, Applied Science University (ASU), Manama, Kingdom of Bahrain.
This paper presents an in-depth analytical investigation into the time-dependent flow of a Casson hybrid nanofluid over a radially stretching sheet. The study introduces the effects of magnetic fields and thermal radiation, along with velocity and thermal slip, to model real-world systems for enhancing heat transfer in critical industrial applications. The hybrid nanofluid consists of three nanoparticles-Copper and Graphene Oxide-suspended in Kerosene Oil, selected for their stable and superior thermal properties.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemical & Biological Engineering, Montana State University, Bozeman, USA.
Common adhesives for nonstructural applications are manufactured using petrochemicals and synthetic solvents. These adhesives are associated with environmental and health concerns because of their release of volatile organic compounds (VOCs). Biopolymer adhesives are an attractive alternative because of lower VOC emissions, but their strength is often insufficient.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!