Soluble Interleukin-6 receptor (sIL-6R) mediated trans-signaling is an important pro-inflammatory stimulus associated with pathological conditions, such as arthritis, neurodegeneration and inflammatory bowel disease. The sIL-6R is generated proteolytically from its membrane bound form and A Disintegrin And Metalloprotease (ADAM) 10 and 17 were shown to perform ectodomain shedding of the receptor in vitro and in vivo. However, under certain conditions not all sIL-6R could be assigned to ADAM10/17 activity. Here, we demonstrate that the IL-6R is a shedding substrate of soluble meprin α and membrane bound meprin β, resulting in bioactive sIL-6R that is capable of inducing IL-6 trans-signaling. We determined cleavage within the N-terminal part of the IL-6R stalk region, distinct from the cleavage site reported for ADAM10/17. Interestingly, meprin β can be shed from the cell surface by ADAM10/17 and the observation that soluble meprin β is not capable of shedding the IL-6R suggests a regulatory mechanism towards trans-signaling. Additionally, we observed a significant negative correlation of meprin β expression and IL-6R levels on human granulocytes, providing evidence for in vivo function of this proteolytic interaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5343444PMC
http://dx.doi.org/10.1038/srep44053DOI Listing

Publication Analysis

Top Keywords

soluble interleukin-6
8
interleukin-6 receptor
8
membrane bound
8
soluble meprin
8
meprin
6
meprin metalloproteases
4
metalloproteases generate
4
generate biologically
4
biologically active
4
soluble
4

Similar Publications

Clonal hematopoiesis of indeterminate potential (CHIP) is associated with increased mortality and malignancy risk, yet the determinants of clonal expansion remain poorly understood. We performed sequencing at >4,000x depth of coverage for CHIP mutations in 6,986 postmenopausal women from the Women's Health Initiative at two timepoints approximately 15 years apart. Among 3,685 mutations detected at baseline (VAF ≥ 0.

View Article and Find Full Text PDF

Predictive Value of Selected Plasma Biomarkers in the Assessment of the Occurrence and Severity of Coronary Artery Disease.

Int J Mol Sci

January 2025

Department of Invasive Cardiology, Independent Public Specialist Western Hospital John Paul II, Lazarski University, 05-825 Grodzisk Mazowiecki, Poland.

Despite significant advances in imaging modalities for diagnosing coronary artery disease (CAD), there remains a need for novel diagnostic approaches with high predictive values and fewer limitations. Circulating biomarkers, including cytokines such as interleukin-6 (IL-6) and interleukin-8 (IL-8), cell adhesion molecules such as soluble vascular cell adhesion molecule-1 (sVCAM-1), peptides secreted by endothelial cells such as endothelin-1 (ET-1), and enzymes involved in extracellular matrix remodeling such as a disintegrin and metalloproteinase with thrombospondin motifs-1 (ADAMTS-1) offer a promising alternative. This study aimed to evaluate the correlation between the plasma levels of selected biomarkers and the presence and severity of CAD.

View Article and Find Full Text PDF

Chronic coronary artery disease (CAD) remains a significant global healthcare burden. Current risk assessment methods have notable limitations in early detection and risk stratification. Hence, there is an urgent need for innovative biomarkers that facilitate the premature CAD diagnosis, ultimately leading to reduction in associated morbidity and mortality rates.

View Article and Find Full Text PDF

Background: CD4+ T lymphocytes are key immune cells involved in orbital inflammation in thyroid eye disease (TED). Inhibition of their activity is important in treatment of TED, but effective drugs targeting these cells are lacking. The programmed cell death-1/programmed cell death ligand-1 pathway has been implicated in several T-cell-mediated diseases.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is associated with chronic low-grade inflammation, but the primary factors triggering this inflammation remain unclear. Extracellular or cell-free DNA (exDNA) originates from virtually all tissues, being released during cell death, and stimulates the innate immune system. Our study was designed as an observational, cross-sectional cohort study of children with CKD (both before and after kidney transplantation) and controls to analyze associations between exDNA, markers of inflammation, and cardiovascular health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!