Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: Parkinson's disease (PD) is associated with aggregation of α-synuclein and selective death of dopaminergic (DA) neurons in the substantia nigra, thereby leading to cognitive and motor impairments. Nowadays, the drugs commonly used for PD treatment, such as levodopa, provide only symptomatic relief. Therefore, seeking new drugs against PD, especially from plants and marine organisms, is one of the major research areas to be explored. This study aimed to investigate the anti-Parkinson activity of the extracts from the sea cucumber, Holothuria scabra, by using Caenorhabditis elegans as a model.
Methods: H. scabra was solvent-extracted and subdivided into six fractions including whole body-ethyl acetate (WBEA), body wall-ethyl acetate (BWEA), viscera-ethyl acetate (VIEA), whole body-butanol (WBBU), body wall-butanol (BWBU), and viscera-butanol (VIBU). The extracts were tested in C. elegans BZ555 strain expressing the green fluorescent protein (GFP) specifically in the DA neurons and NL5901 strain expressing human α-synuclein in the muscle cells.
Results: WBEA, BWEA, and WBBU fractions of H. scabra extracts at 500 µg/ml significantly attenuated DA neuron-degeneration induced by selective cathecholamine neurotoxin 6-hydroxydopamine (6-OHDA) in the BZ555 strain. Moreover, the extracts also reduced α-synuclein aggregation and restored lipid content in NL5901, as well as improved food-sensing behavior and prolonged lifespan in the 6-OHDA-treated wild-type strain.
Discussion: The study indicated that the H. scabra extracts have anti-Parkinson potential in the C. elegans model. These findings encourage further investigations on using the H. scabra extract, as well as its active constituent compounds, as a possible preventive and/or therapeutic intervention against PD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/1028415X.2017.1299437 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!