Serpentinization is a geologic process that produces highly reduced, hydrogen-rich fluids that support microbial communities under high pH conditions. We investigated the activity of microbes capable of extracellular electron transfer in a terrestrial serpentinizing system known as 'The Cedars'. Measuring current generation with an on-site two-electrode system, we observed daily oscillations in current with the current maxima and minima occurring during daylight hours. Distinct members of the microbial community were enriched. Current generation in lab-scale electrochemical reactors did not oscillate, but was correlated with carbohydrate amendment in Cedars-specific minimal media. Gammaproteobacteria and Firmicutes were consistently enriched from lab electrochemical systems on δ-MnO and amorphous Fe(OH) at pH 11. However, isolation of an electrogenic strain proved difficult as transfer cultures failed to grow after multiple rounds of media transfer. Lowering the bulk pH in the media allowed us to isolate a Firmicutes strain (Paenibacillus sp.). This strain was capable of electrode and mineral reduction (including magnetite) at pH 9. This report provides evidence of the in situ activity of microbes using extracellular substrates as sinks for electrons at The Cedars, but also highlights the potential importance of community dynamics for supporting microbial life through either carbon fixation, and/or moderating pH stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1462-2920.13723 | DOI Listing |
Int J Mol Sci
January 2025
Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey.
Fucosidosis is a rare lysosomal storage disease caused by α-L-fucosidase deficiency following a mutation in the gene. This enzyme is responsible for breaking down fucose-containing glycoproteins, glycolipids, and oligosaccharides within the lysosome. Mutations in result in either reduced enzyme activity or complete loss of function, leading to the accumulation of fucose-rich substrates in lysosomes.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
USDA-ARS, US Arid Land Agricultural Research Center, 21881 North Cardon Lane Maricopa, Maricopa, AZ 85138, USA.
As farming practices evolve and climate conditions shift, achieving sustainable food production for a growing global population requires innovative strategies to optimize environmentally friendly practices and minimize ecological impacts. Agroecosystems, which integrate agricultural practices with the surrounding environment, play a vital role in maintaining ecological balance and ensuring food security. Rhizosphere management has emerged as a pivotal approach to enhancing crop yields, reducing reliance on synthetic fertilizers, and supporting sustainable agriculture.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Center for Natural Product Systems Biology, Institute of Natural Product, Korea Institute of Science and Technology, Gangneung, 25451, Republic of Korea.
Genome mining is a promising avenue for expanding the repertoire of microbial natural products, which are important for drug development. This approach involves predicting genetically encoded small molecules by examining bacterial genomes via accumulated knowledge of microbial biosynthesis. However, it is also important that the microbes produce the predicted molecule in practice.
View Article and Find Full Text PDFPathog Dis
January 2025
Westerdijk Fungal Biodiversity Institute. Royal Dutch Academy of Arts and Sciences. Uppsalalaan 8, 3584CT Utrecht, The Netherlands.
Inflammatory diseases of the human gastrointestinal tract are affected by the microbes that reside in the mucosal surfaces. Patients with inflammatory bowel diseases (IBD) have altered bacterial and fungal intestinal compositions, including higher levels of fecal Candida yeasts. Ongoing research indicates that genetic and phenotypic diversity of Candida albicans may be linked with disease severity.
View Article and Find Full Text PDFLancet Microbe
December 2024
Institute of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Germany; German Center for Infection Research, Munich Partner Site, Munich, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection, and Pandemic Research, Munich, Germany; Unit Global Health, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany. Electronic address:
Background: The broad use of bedaquiline and pretomanid as the mainstay of new regimens to combat tuberculosis is a risk due to increasing bedaquiline resistance. We aimed to assess the safety, bactericidal activity, and pharmacokinetics of BTZ-043, a first-in-class DprE1 inhibitor with strong bactericidal activity in murine models.
Methods: This open-label, dose-expansion, randomised, controlled, phase 1b/2a trial was conducted in two specialised tuberculosis sites in Cape Town, South Africa.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!