The threshold hypothesis is a classical and notable explanation for the relationship between creativity and intelligence. However, few empirical examinations of this theory exist, and the results are inconsistent. To test this hypothesis, this study investigated the relationship between divergent thinking (DT) and intelligence with a sample of 568 Chinese children aged between 11 and 13 years old using testing and questionnaire methods. The study focused on the breakpoint of intelligence and the moderation effect of openness on the relationship between intelligence and DT. The findings were as follows: (1) a breakpoint at the intelligence quotient (IQ) of 109.20 when investigating the relationship between either DT fluency or DT flexibility and intelligence. Another breakpoint was detected at the IQ of 116.80 concerning the correlation between originality and intelligence. The breakpoint of the relation between the composite score of creativity and intelligence occurred at the IQ of 110.10. (2) Openness to experience had a moderating effect on the correlation between the indicators of creativity and intelligence under the breakpoint. Above this point, however, the effect was not significant. The results suggested a relationship between DT and intelligence among Chinese children, which conforms to the threshold hypothesis. Besides, it remains necessary to explore the personality factors accounting for individual differences in the relationship between DT and intelligence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5319977 | PMC |
http://dx.doi.org/10.3389/fpsyg.2017.00254 | DOI Listing |
Croat Med J
December 2024
Hrvoje Barić, Croatian Medical Journal, Zagreb, Croatia,
J Chem Theory Comput
January 2025
Advanced Artificial Intelligence Theoretical and Computational Chemistry Laboratory, School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India.
We present a directed electrostatics strategy integrated as a graph neural network (DESIGNN) approach for predicting stable nanocluster structures on their potential energy surfaces (PESs). The DESIGNN approach is a graph neural network (GNN)-based model for building structures of large atomic clusters with specific sizes and point-group symmetry. This model assists in the structure building of atomic metal clusters by predicting molecular electrostatic potential (MESP) topography minima on their structural evolution paths.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, 110122, P. R. China.
Constructing bifunctional electrocatalysts through the synergistic effect of diverse metal sites is crucial for achieving high-efficiency and steady overall water splitting. Herein, a "dual-HER/OER-sites-in-one" strategy is proposed to regulate dominant active sites, wherein Ni/Co(OH)-Ru heterogeneous catalysts formed on nickel foam (NF) demonstrate remarkable catalytic activity for oxygen evolution reaction (OER) as well as hydrogen evolution reaction (HER). Meanwhile, the potentials@10 mA cm of Ni/Co(OH)-Ru@NF for overall alkaline water and seawater splitting are only 1.
View Article and Find Full Text PDFNano Lett
January 2025
Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
The ferroelectric tunnel junction (FTJ) is a competitive candidate for post-Moore nonvolatile memories due to its low power consumption and nonvolatility, with its performance being strongly dependent on the conditions for contact between the ferroelectric material and the metal electrode. The development of two-dimensional materials in recent years has offered new opportunities such as functional metal layers, which is challenging for traditional FTJ systems. Here, we introduce the newly discovered ferroelectric metal WTe as the electrode to construct WTe/α-InSe/Au ferroelectric semiconductor junctions.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
In this study, we present an intelligent electromagnetic-actuated microfluidic chip integrated with a G-quadruplex DNAzyme-based biocatalysis platform for rapid and sensitive tetracycline (TC) detection. In this sensing system, TC significantly quenches fluorescent magnetic carbon dots (M-CDs) via the internal filtration effect and dynamic quenching (the excitation and emission wavelength at 350 and 440 nm, respectively). Then, the G-quadruplex on the M-CDs-Aptamer is exposed and bound with hemin to form hemin-G-quadruplex DNAzyme, catalyzing the conversion of 3,3',5,5'-tetramethylbenzidine to produce blue color.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!