In animals, introgression between species is often perceived as the breakdown of reproductive isolating mechanisms, but gene flow between incipient species can also represent a source for potentially beneficial alleles. Recently, genome-wide datasets have revealed clusters of differentiated loci ('genomic islands of divergence') that are thought to play a role in reproductive isolation and therefore have reduced gene flow. We use simulations to further examine the evolutionary forces that shape and maintain genomic islands of divergence between two subspecies of the migratory songbird, Swainson's thrush (), which have come into secondary contact since the last glacial maximum. We find that, contrary to expectation, gene flow is high within islands and is highly asymmetric. In addition, patterns of nucleotide diversity at highly differentiated loci suggest selection was more frequent in a single ecotype. We propose a mechanism whereby beneficial alleles spread via selective sweeps following a post-glacial demographic expansion in one subspecies and move preferentially across the hybrid zone. We find no evidence that genomic islands are the result of divergent selection or reproductive isolation, rather our results suggest that differentiated loci both within and outside islands could provide opportunities for adaptive introgression across porous species boundaries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5360917 | PMC |
http://dx.doi.org/10.1098/rspb.2016.2414 | DOI Listing |
Vet Sci
December 2024
Camel Research Center, King Faisal University, 400 Al-Ahsa, Hofuf 31982, Saudi Arabia.
Currently, bacterial classification at the species level relies on the 95-96% average nucleotide identity (ANI) value that is known to be equivalent to a 70% digital DNA-DNA hybridization (dDDH) value. However, during the routine identification of bacteria in the uteri of camels with a history of conception failure, we found that four out of the seven strains (2298A, 2569A, 2652, 2571B, 1103A, 2571A, and 335C) could not be assigned to any valid species. Furthermore, a 70% dDDH value did not correspond to a 95-96% ANI value in strain 2569A.
View Article and Find Full Text PDFFront Microbiol
December 2024
Núcleo de Investigación en One Health, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile.
Type VI Secretion Systems (T6SS), widely distributed in Gram-negative bacteria, contribute to interbacterial competition and pathogenesis through the translocation of effector proteins to target cells. harbor 5 pathogenicity islands encoding T6SS (SPI-6, SPI-19, SPI-20, SPI-21 and SPI-22), in which a limited number of effector proteins have been identified. Previous analyses by our group focused on the identification of candidate T6SS effectors and cognate immunity proteins in genomes deposited in public databases.
View Article and Find Full Text PDFVirus Evol
November 2024
Department of Paraclinical Sciences, Norwegian University of Life Sciences, Post box 5003, Ås 1432, Norway.
Over a decade since its discovery, piscine myocarditis virus (PMCV) remains a significant pathogen in Atlantic salmon aquaculture. Despite this significant impact, the genomic landscape, evolutionary dynamics, and virulence factors of PMCV are poorly understood. This study enhances the existing PMCV sequence dataset by adding 34 genome sequences and 202 new ORF3 sequences from clinical cardiomyopathy syndrome (CMS) cases in Norwegian aquaculture.
View Article and Find Full Text PDFEur J Clin Microbiol Infect Dis
December 2024
Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland.
Purpose: This study was aimed at comprehensive genomic analysis of VIM-type carbapenemase-producing Klebsiella pneumoniae species complex (KpSC) in Poland.
Methods: All non-duplicate 214 VIM-producing KpSC isolates reported in Poland in 2006-2019 were short-read sequenced and re-identified by the average nucleotide identity scoring. Their clonality/phylogeny was assessed by cgMLST and SNP in comparison with genomes from international databases.
Clin Epigenetics
December 2024
School of Mathematical and Statistical Sciences, University of Galway, Galway, Ireland.
Background: Epigenetic age (EA) is an age estimate, developed using DNA methylation (DNAm) states of selected CpG sites across the genome. Although EA and chronological age are highly correlated, EA may not increase uniformly with time. Departures, known as epigenetic age acceleration (EAA), are common and have been linked to various traits and future disease risk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!