A self-organizing organoid model provides a new approach to study the mechanism of human liver organogenesis. Previous animal models documented that simultaneous paracrine signaling and cell-to-cell surface contact regulate hepatocyte differentiation. To dissect the relative contributions of the paracrine effects, we first established a liver organoid using human induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) as previously reported. Time-lapse imaging showed that hepatic-specified endoderm iPSCs (HE-iPSCs) self-assembled into three-dimensional organoids, resulting in hepatic gene induction. Progressive differentiation was demonstrated by hepatic protein production after organoid transplantation. To assess the paracrine contributions, we employed a Transwell system in which HE-iPSCs were separately co-cultured with MSCs and/or HUVECs. Although the three-dimensional structure did not form, their soluble factors induced a hepatocyte-like phenotype in HE-iPSCs, resulting in the expression of bile salt export pump. In conclusion, the mesoderm-derived paracrine signals promote hepatocyte maturation in liver organoids, but organoid self-organization requires cell-to-cell surface contact. Our model demonstrates a novel approach to identify developmental paracrine signals regulating the differentiation of human hepatocytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5358109 | PMC |
http://dx.doi.org/10.1242/dev.142794 | DOI Listing |
Mol Metab
January 2025
Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Electronic address:
Besides its thermogenic capacity, brown adipose tissue (BAT) performs important secretory functions that regulate metabolism. However, the BAT microenvironment and factors involved in BAT homeostasis and adaptation to cold remain poorly characterized. We therefore aimed to study brown adipocyte-derived secreted factors that may be involved in adipocyte function and/or may orchestrate intercellular communications.
View Article and Find Full Text PDFJ Physiol Sci
January 2025
National Institute for Physiological Sciences (NIPS), 5-1 Higashiyama, Myodaiji, 444-8787, Okazaki, Aichi, Japan; Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan; Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan; Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan. Electronic address:
The volume-sensitive outwardly rectifying or volume-regulated anion channel, VSOR/VRAC, which was discovered in 1988, is expressed in most vertebrate cell types, and is essentially involved in cell volume regulation after swelling and in the induction of cell death. This series of review articles describes what is already known and what remains to be uncovered about the functional and molecular properties as well as the physiological and pathophysiological roles of VSOR/VRAC. This Part 2 review article describes, from the physiological and pathophysiological standpoints, first the pivotal roles of VSOR/VRAC in the release of autocrine/paracrine organic signal molecules, such as glutamate, ATP, glutathione, cGAMP, and itaconate, as well as second the swelling-independent and -dependent activation mechanisms of VSOR/VRAC.
View Article and Find Full Text PDFCell Struct Funct
January 2025
Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University.
Live imaging techniques have revolutionized our understanding of paracrine signaling, a crucial form of cell-to-cell communication in biological processes. This review examines recent advances in visualizing and tracking paracrine factors through four key stages: secretion from producing cells, diffusion through extracellular space, binding to target cells, and activation of intracellular signaling within target cells. Paracrine factor secretion can be directly visualized by fluorescent protein tagging to ligand, or indirectly by visualizing the cleavage of the transmembrane pro-ligands or plasma membrane fusion of endosomes comprising the paracrine factors.
View Article and Find Full Text PDFStem Cell Rev Rep
January 2025
Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, Merelbeke, B-9820, Belgium.
Over the past decade, research on embryo-derived extracellular vesicles (EVs) has unveiled their critical roles in embryonic development and intercellular communication. EVs secreted by embryos are nanoscale lipid bilayer vesicles that carry bioactive cargo, including proteins, lipids, RNAs, and DNAs, reflecting the physiological state of the source cells. These vesicles facilitate paracrine and autocrine signaling, influencing key processes such as cell differentiation, embryo viability, and endometrial receptivity.
View Article and Find Full Text PDFThe disproportionate risk for idiopathic proteinuric podocytopathies in Black people is explained, in part, by the presence of two risk alleles (G1 or G2) in the gene. The pathogenic mechanisms responsible for this genetic association remain incompletely understood. We analyzed glomerular RNASeq transcriptomes from patients with idiopathic nephrotic syndrome of which 72 had inferred African ancestry (AA) and 152 did not (noAA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!