Exenatide improves liver mitochondrial dysfunction and insulin resistance by reducing oxidative stress in high fat diet-induced obese mice.

Biochem Biophys Res Commun

Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Clinical Medical Center of Endocrinology and Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, China. Electronic address:

Published: April 2017

Oxidative stress is associated with obesity and may be accompanied by liver insulin resistance and mitochondrial dysfunction. Decreased mitochondrial respiratory chain enzymatic activities and decreased insulin metabolic signaling may promote these maladaptive changes. In this context, exenatide has been reported to reduce hepatic lipid deposition, improve insulin sensitivity and improve mitochondrial dysfunction. We hypothesized that exenatide would attenuate mitochondrial dysfunction by reducing hepatic lipid deposition, blunting oxidant stress and promoting insulin metabolic signaling in a high fat diet-induced model of obesity and insulin resistance. Sixteen-week-old male C57BL/6 diet-induced obese (DIO) mices and age-matched standard diet (STD) mices were treated with exenatide (10 μg/kg twice a day) for 28 days. Compared with untreated STD mice, untreated DIO mice exhibited deposited excessive lipid in liver and produced the oxidative stress in conjunction with insulin resistance, abnormal hepatic cells and mitochondrial histoarchitecture, mitochondrial dysfunction and reduced organism metabolism. Exenatide reduced hepatic steatosis, decreased oxidative stress, and improved insulin resistance in DIO mice, in concert with improvements in the insulin metabolic signaling, mitochondrial respiratory chain enzymatic activation, adenine nucleotide production, organism metabolism and weight gain. Results support the hypothesis that exenatide reduces hepatic cells and mitochondrial structural anomaly and improves insulin resistance in concert with improvements in insulin sensitivity and mitochondrial function activation, concomitantly with reductions in oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2017.03.010DOI Listing

Publication Analysis

Top Keywords

insulin resistance
24
mitochondrial dysfunction
20
oxidative stress
20
insulin metabolic
12
metabolic signaling
12
insulin
11
mitochondrial
10
high fat
8
fat diet-induced
8
diet-induced obese
8

Similar Publications

Background: Among hypertensive cohorts across different nations, the relationship between the triglyceride-glucose index (TyG) and its conjunction with obesity metrics in relation to cardiovascular disease (CVD) incidence and mortality remains to be elucidated.

Methods: This study enrolled 9,283, 164,357, and 5,334 hypertensives from the National Health and Nutrition Examination Survey (NHANES), UK Biobank (UKBB), and Shanghai Pudong cohort. The related outcomes for CVD were defined by multivariate Cox proportional hazards models, Generalized Additive Models and Mendelian randomization analysis.

View Article and Find Full Text PDF

Background: As the prevalence of metabolic syndrome (MetS) rises among older adults, the associated risks of cardiovascular diseases and diabetes significantly increase, and it is closely linked to various metabolic processes in the body. Dysregulation of tryptophan (TRP) metabolism, particularly alterations in the kynurenine (KYN) and serotonin pathways, has been linked to the onset of chronic inflammation, oxidative stress, and insulin resistance, key contributors to the development of MetS. We aim to investigate the relationship between the TRP metabolites and the risk of MetS in older adults.

View Article and Find Full Text PDF

Insulin receptor substrate (IRS)-1 and IRS-2 are major molecules that transduce signals from insulin and insulin-like growth factor-I receptors. The physiological functions of these proteins have been intensively investigated in mice, while little is known in other animals. Our previous study showed that the disruption of IRS-2 impairs body growth but not glucose tolerance or insulin sensitivity in rats, which led us to hypothesize that IRS-1 plays more pivotal roles in insulin functions than IRS-2.

View Article and Find Full Text PDF

Background: Diabetes is a primary contributor to diabetic cardiomyopathy (DbCM), which is marked by metabolic imbalances such as elevated blood glucose and lipid levels, leading to significant structural and functional alterations in the myocardium. Elevated free fatty acids (FFAs) and hyperglycemia play critical roles in DbCM development, with FFAs inducing insulin resistance in cardiomyocytes and promoting lipid accumulation, resulting in oxidative stress and fibrosis. Current research suggests that glucagon-like peptide-1 (GLP-1) receptor agonists may effectively mitigate DbCM, although an effective treatment for this condition remains elusive, and the precise mechanisms of this protective effect are not fully understood.

View Article and Find Full Text PDF

Background And Aims: Early life factors have been suggested to be associated with later cardiometabolic risk in children, adolescents and adults. Our study aimed to investigate the associations between early life factors and metabolic syndrome (MetS) in children and adolescents.

Methods And Results: Our analysis sample comprised of 8852 children aged 2-9 years at baseline that participated in up to three examination waves of the pan-European IDEFICS/I.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!