The whale shark (Rhincodon typus) is an endangered species that may be exposed to micro- and macro-plastic ingestion as a result of their filter-feeding activity, particularly on the sea surface. In this pilot project we perform the first ecotoxicological investigation on whale sharks sampled in the Gulf of California exploring the potential interaction of this species with plastic debris (macro-, micro-plastics and related sorbed contaminants). Due to the difficulty in obtaining stranded specimens of this endangered species, an indirect approach, by skin biopsies was used for the evaluation of the whale shark ecotoxicological status. The levels of organochlorine compounds (PCBs, DDTs), polybrominated diphenyl ethers (PBDEs) plastic additives, and related biomarkers responses (CYP1A) were investigated for the first time in the whale shark. Twelve whale shark skin biopsy samples were collected in January 2014 in La Paz Bay (BCS, Mexico) and a preliminary investigation on microplastic concentration and polymer composition was also carried out in seawater samples from the same area. The average abundance pattern for the target contaminants was PCBs>DDTs>PBDEs>HCB. Mean concentration values of 8.42ng/g w.w. were found for PCBs, 1.31ng/g w.w. for DDTs, 0.29ng/g w.w. for PBDEs and 0.19ng/g w.w. for HCB. CYP1A-like protein was detected, for the first time, in whale shark skin samples. First data on the average density of microplastics in the superficial zooplankton/microplastic samples showed values ranging from 0.00items/m to 0.14items/m. A focused PCA analysis was performed to evaluate a possible correlation among the size of the whale sharks, contaminants and CYP1A reponses. Further ecotoxicological investigation on whale shark skin biopsies will be carried out for a worldwide ecotoxicological risk assessment of this endangerd species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpc.2017.03.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!