Introduction: There is growing interest in colour stability of aesthetic restorations. So far few studies have been reported.
Aim: This study was designed to investigate the effects of different common food colourants i.e., Turmeric and Carmoisine (orange red dye) consumed by patients in Asian countries on a recent nano hybrid composite resin.
Materials And Methods: A total of sixty disk shaped specimens measuring 10 mm in diameter and 2 mm in thickness were prepared. The samples were divided into two groups {Z 100 (Dental restorative composite) Filtek Z 250 XT (Nano hybrid universal restorative)}. Baseline colour measurement of all specimens were made using reflectance spectrophotometer with CIE L*a*b* system. Specimens were immersed in artificial saliva and different experimental solutions containing food colourants (carmoisine solution and turmeric solution) for three hours per day at 37°C. Colour measurements were made after 15 days. Colour difference (ΔE*) was calculated. Mean values were compared by one-way analysis of variance (ANOVA). Multiple range test by Tukey Post-hoc test procedure was employed to identify the significant groups at 5% level.
Results: Z 100 showed minimum staining capacity when compared to Z 250 XT in both the colourant solutions.
Conclusion: The nanohybrid composite resin containing TEGDMA showed significant colour change when compared to that of microhybrid composite resin as a result of staining in turmeric and carmoisine solution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5324498 | PMC |
http://dx.doi.org/10.7860/JCDR/2017/22919.9193 | DOI Listing |
Nat Commun
December 2024
College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, China.
Early disease diagnosis hinges on the sensitive detection of signaling molecules. Among these, hydrogen sulfide (HS) has emerged as a critical player in cardiovascular and nervous system signaling. On-chip immunoassays, particularly nanoarray-based interfacial detection, offer promising avenues for ultra-sensitive analysis due to their confined reaction volumes and precise signal localization.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Republic of Korea.
Ultrasmall-scale semiconductor devices (≤5 nm) are advancing technologies, such as artificial intelligence and the Internet of Things. However, the further scaling of these devices poses critical challenges, such as interface properties and oxide quality, particularly at the high-/semiconductor interface in metal-oxide-semiconductor (MOS) devices. Existing interlayer (IL) methods, typically exceeding 1 nm thickness, are unsuitable for ultrasmall-scale devices.
View Article and Find Full Text PDFSci Rep
December 2024
School of Physics and Materials Science, Shoolini University, Solan, H.P., India.
The industrial sector faces a significant challenge in finding the highly effective and efficient treatments for harmful dye-based color effluents. In this study, pure and cobalt doped barium hexaferrite of chemical formula, BaCoFeO (x = 0-0.06) are made via sol-gel auto-combustion (SC) methodology.
View Article and Find Full Text PDFNano Lett
December 2024
Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States.
Rutile GeO and related materials are attracting interest due to their ultrawide band gaps and potential for ambipolar doping in high-power electronic applications. This study examines the growth of rutile SnGeO films through oxygen-plasma-assisted hybrid molecular beam epitaxy (hMBE). The film composition and thickness are evaluated across a range of growth conditions, with the outcomes rationalized by using density functional theory calculations.
View Article and Find Full Text PDFACS Nano
December 2024
Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy.
We report the synthesis of ethylammonium lead iodide (EAPbI) colloidal nanocrystals as another member of the lead halide perovskites family. The insertion of an unusually large -cation (274 pm in diameter) in the perovskite structure, hitherto considered unlikely due to the unfavorable Goldschmidt tolerance factor, results in a significantly larger lattice parameter compared to the Cs-, methylammonium- and formamidinium-based lead halide perovskite homologues. As a consequence, EAPbI nanocrystals are highly unstable, evolving to a nonperovskite δ-EAPbI polymorph within 1 day.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!