Protein kinase CK2 is a small family of protein kinases that has been implicated in an expanding array of biological processes. While it is widely accepted that CK2 is a regulatory participant in a multitude of fundamental cellular processes, CK2 is often considered to be a constitutively active enzyme which raises questions about how it can be a regulatory participant in intricately controlled cellular processes. To resolve this apparent paradox, we have performed a systematic analysis of the published literature using text mining as well as mining of proteomic databases together with computational assembly of networks that involve CK2. These analyses reinforce the notion that CK2 is involved in a broad variety of biological processes and also reveal an extensive interplay between CK2 phosphorylation and other post-translational modifications. The interplay between CK2 and other post-translational modifications suggests that CK2 does have intricate roles in orchestrating cellular events. In this respect, phosphorylation of specific substrates by CK2 could be regulated by other post-translational modifications and CK2 could also have roles in modulating other post-translational modifications. Collectively, these observations suggest that the actions of CK2 are precisely coordinated with other constituents of regulatory cellular networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5374431 | PMC |
http://dx.doi.org/10.3390/ph10010027 | DOI Listing |
Front Plant Sci
December 2024
Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine.
Melatonin is considered a multifunctional stress metabolite and a novel plant hormone affecting seed germination, root architecture, circadian rhythms, leaf senescence, and fruit ripening. Melatonin functions related to plant adaptation to stress stimuli of various natures are considered especially important. One of the key components of melatonin's stress-protective action is its ability to neutralise reactive oxygen species (ROS) and reactive nitrogen species directly.
View Article and Find Full Text PDFDiscov Med
December 2024
Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, 610017 Chengdu, Sichuan, China.
Background: Nuclear receptor subfamily 4 group A member 3 () is lowly expressed in ectopic endometrium and can be degraded by ubiquitination in vascular endothelial cells. Murine double minute 2 () is predicted to be the ubiquitin ligase of . Hence, we investigated the effects of and on endometriosis and clarified corresponding regulatory mechanisms.
View Article and Find Full Text PDFScand J Immunol
January 2025
Department of Neurology, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China.
Fas has been shown to positively regulate the differentiation of T helper 17 (Th17) cells in mouse models of experimental autoimmune encephalomyelitis (EAE). Fas protein expression is regulated by ubiquitination but has not been further studied. In this study, we investigated the role of the Fas ubiquitin ligase in Th17 cell differentiation and highlighted its potential as a therapeutic target for EAE.
View Article and Find Full Text PDFCancer Metastasis Rev
December 2024
Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, 453552, Simrol, Madhya Pradesh, India.
Protein S-palmitoylation is a reversible form of protein lipidation in which the formation of a thioester bond occurs between a cysteine (Cys) residue of a protein and a 16-carbon fatty acid chain. This modification is catalyzed by a family of palmitoyl acyl transferases, the DHHC enzymes, so called because of their Asp-His-His-Cys (DHHC) catalytic motif. Deregulation of DHHC enzymes has been linked to various diseases, including cancer and infections.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
Aldosterone-producing adenoma (APA) is a leading cause of primary aldosteronism (PA), a condition marked by excessive aldosterone secretion. CYP11B2, the aldosterone synthase, plays a critical role in aldosterone biosynthesis and the development of APA. Despite its significance, encoding regulatory mechanisms governing CYP11B2, particularly its degradation, remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!