[General profile of the nutrition surplus in Mexico from 1990-2013: An approach using the energy supplied by macronutrients and food groups].

Salud Colect

Doctora en Ciencias Sociales, con especialidad en Antropología Médica. Profesora-Investigadora jubilada, Centro de Investigaciones Regionales Hideyo Noguchi, Universidad Autónoma de Yucatán, México.

Published: March 2018

AI Article Synopsis

  • The analysis focuses on the excessive food energy supply in Mexico from 1990 to 2013, comparing energy requirements to actual per capita supply.
  • The average energy surplus was consistently between 700 to 800 kcal per person daily, primarily driven by sugar and meat consumption, especially poultry and pork.
  • This overconsumption contributes to chronic health issues and unsustainable resource use, highlighting significant public health and environmental concerns.

Article Abstract

This text analyzes the evolution of the excessive food energy supply in Mexico from 1990 to 2013. For each year, the energy and macronutrient requirements of the Mexican population were estimated and contrasted with the per capita energy supply. Discrepancies between requirement and supply were analyzed as a time series. The energy surplus ranged from 700 to 800 kcal per capita per day throughout the studied period and sugar/sweeteners contributed the highest above-requirement energy supply. Lipids excess increased steadily and intensely, mainly due to lipid increases from poultry and pork. Excess energy from alcoholic beverages tended to be concentrated into growing beer consumption. In summary, the energy supply and the corresponding surplus tended to be made up mainly of sugar/sweeteners and meat. This has direct implications for the prevalence of chronic non-communicable diseases as well as unsustainable use of land, water and energy.

Download full-text PDF

Source
http://dx.doi.org/10.18294/sc.2016.925DOI Listing

Publication Analysis

Top Keywords

energy supply
16
energy
9
supply
5
[general profile
4
profile nutrition
4
nutrition surplus
4
surplus mexico
4
mexico 1990-2013
4
1990-2013 approach
4
approach energy
4

Similar Publications

Metabolic engineering for single-cell protein production from renewable feedstocks and its applications.

Adv Biotechnol (Singap)

September 2024

School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China.

Proteins are indispensable for maintaining a healthy diet and performing crucial functions in a multitude of physiological processes. The growth of the global population and the emergence of environmental concerns have significantly increased the demand for protein-rich foods such as meat and dairy products, exerting considerable pressure on global food supplies. Single-cell proteins (SCP) have emerged as a promising alternative source, characterized by their high protein content and essential amino acids, lipids, carbohydrates, nucleic acids, inorganic salts, vitamins, and trace elements.

View Article and Find Full Text PDF

Unlabelled: In very preterm-born infants, nutritional intake is important to reduce the risk of severe metabolic bone disease including the risk of a lower bone mineral density (BMD). The aim of this study was to evaluate bone mineral content (BMC) and BMD (measured as BMC per bone area (BA)) at six years of age in very preterm-born infants fed different diets post-discharge. Data on this topic so far is insufficient, and with this study we aim to supply more useful data.

View Article and Find Full Text PDF

Water impact analysis due to coal-electricity generation using the life cycle assessment method: a case study in Malaysia.

Water Sci Technol

January 2025

Department of Engineering, School of Engineering and Technology, Sunway University, Bandar Sunway, Petaling, Jaya 47500, Malaysia.

Coal power plants adversely impact air pollution, but they also pose a risk to our water sources. Discharge wastewater from power plants may degrade the quality of nearby water bodies. This study evaluates the potential water-related environmental impacts of electricity generation at an ultra-supercritical coal power plant in Malaysia using the life cycle assessment method.

View Article and Find Full Text PDF

Methane production from anaerobic pre-treatment of municipal wastewater combined with olive mill wastewater: A demonstration study.

Water Sci Technol

January 2025

The Institute of Applied Research, The Galilee Society, Shefa-Amr 2020000, Israel; Agrobics Ltd, Shefa-Amr 2020000, Israel; Prof. Ephraim Katzir Department of Biotechnology Engineering, Braude College of Engineering, Karmiel 2161002, Israel.

The advanced anaerobic technology (AAT), developed based on an immobilized high-rate anaerobic reactor, was applied as a pretreatment of municipal wastewater (WW) at Karmiel's treatment plant in Israel. The demonstration-scale AAT (21 m) system was operated at a flow rate of 100 mday municipal WW mixed with olive mill wastewater (OMW) (0.5 mday) to simulate the scenario of illegal discharge of agro-industrial WW.

View Article and Find Full Text PDF

A BMP-2 sustained-release scaffold accelerated bone regeneration in rats via the BMP-2 consistent activation maintained by a non-sulfate polysaccharide.

Biomed Mater

January 2025

School of Food Science and Technology, Dalian Polytechnic University, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China.

Bone morphogenetic protein 2 (BMP-2) and a polysaccharide (SUP) were embedded in the calcium phosphate cement (CPC) scaffold, and the bone repair ability was evaluated. The new scaffolds were characterized using x-ray diffraction, Fourier transform-infrared, scanning electron microscopy, and energy dispersive spectroscopy analyses. CPC-BMP2-SUPH scaffold promoted the BMP-2 release by 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!