The organization of the genome in the nucleus and the interactions of genes with their regulatory elements are key features of transcriptional control and their disruption can cause disease. Here we report a genome-wide method, genome architecture mapping (GAM), for measuring chromatin contacts and other features of three-dimensional chromatin topology on the basis of sequencing DNA from a large collection of thin nuclear sections. We apply GAM to mouse embryonic stem cells and identify enrichment for specific interactions between active genes and enhancers across very large genomic distances using a mathematical model termed SLICE (statistical inference of co-segregation). GAM also reveals an abundance of three-way contacts across the genome, especially between regions that are highly transcribed or contain super-enhancers, providing a level of insight into genome architecture that, owing to the technical limitations of current technologies, has previously remained unattainable. Furthermore, GAM highlights a role for gene-expression-specific contacts in organizing the genome in mammalian nuclei.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5366070PMC
http://dx.doi.org/10.1038/nature21411DOI Listing

Publication Analysis

Top Keywords

genome architecture
12
architecture mapping
8
genome
6
complex multi-enhancer
4
contacts
4
multi-enhancer contacts
4
contacts captured
4
captured genome
4
mapping organization
4
organization genome
4

Similar Publications

The Spectrum of Genetic Risk in Alzheimer Disease.

Neurol Genet

February 2025

Department of Neurology, Adjunct Medicine, Division Medical Genetics, University of Washington, Seattle.

Alzheimer disease (AD), the most common dementing syndrome in the United States, is currently established by the presence of amyloid-β and tau protein biomarkers in the setting of clinical cognitive impairment. These straightforward diagnostic parameters belie an immense complexity of genetic architecture underlying risk and presentation in AD. In this review, we provide a focused overview of the current state of AD genetics.

View Article and Find Full Text PDF

Over the past 30 years, obesity prevalence has markedly increased globally, including among children. Although genome-wide association studies (GWAS) have identified over 1,000 genetic loci associated with obesity-related traits in adults, the genetic architecture of childhood obesity is less well-characterized. Moreover, most childhood obesity GWAS have been restricted to severely obese children, in relatively small sample sizes, and in primarily European ancestry populations.

View Article and Find Full Text PDF

Optimized convolutional neural network using African vulture optimization algorithm for the detection of exons.

Sci Rep

January 2025

Department of Communication Engineering, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

The detection of exons is an important area of research in genomic sequence analysis. Many signal-processing methods have been established successfully for detecting the exons based on their periodicity property. However, some improvement is still required to increase the identification accuracy of exons.

View Article and Find Full Text PDF

Studying the functional consequences of structural variants (SVs) in mammalian genomes is challenging because (i) SVs arise much less commonly than single-nucleotide variants or small indels and (ii) methods to generate, map, and characterize SVs in model systems are underdeveloped. To address these challenges, we developed Genome-Shuffle-seq, a method that enables the multiplex generation and mapping of thousands of SVs (deletions, inversions, translocations, and extrachromosomal circles) throughout mammalian genomes. We also demonstrate the co-capture of SV identity with single-cell transcriptomes, facilitating the measurement of SV impact on gene expression.

View Article and Find Full Text PDF

Decoding the genetic blueprint: regulation of key agricultural traits in sorghum.

Adv Biotechnol (Singap)

September 2024

School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, 518107, P. R. China.

Sorghum, the fifth most important crop globally, thrives in challenging environments such as arid, saline-alkaline, and infertile regions. This remarkable crop, one of the earliest crops domesticated by humans, offers high biomass and stress-specific properties that render it suitable for a variety of uses including food, feed, bioenergy, and biomaterials. What's truly exciting is the extensive phenotypic variation in sorghum, particularly in traits related to growth, development, and stress resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!