Retinoic acid receptor γ (RARγ), a unique member of the nuclear receptor superfamily, plays an important role in the progression of several cancers such as hepatocellular carcinoma, esophageal cancer, and cholangiocarcinoma. However, little is known about the regulatory mechanism of the RARγ expression in colorectal cancer (CRC) progression. In the present study, we found that RARγ was frequently overexpressed in human CRC specimens and CRC cell lines, and it mainly resided in the cytoplasm in CRC specimens. Tissue microarrays showed that RARγ indicated vital clinical significance in CRC. RARγ knockdown neither affected CRC cell proliferation nor blocked the cell cycle of CRC cells. However, RARγ knockdown increased the sensitivity of CRC cells to chemotherapeutics through downregulation of multi-drug resistance 1(MDR1). Further studies suggested that RARγ knockdown resulted in downregulation of MDR1, in parallel with suppression of the Wnt/β-catenin pathway. Moreover, a significantly positive association between RARγ and MDR1 was demonstrated in CRC tissue microarrays. Collectively, these results suggested that overexpression of RARγ contributed to the multidrug chemoresistance of CRC cells, at least in part due to upregulation of MDR1 via activation of the Wnt/β-catenin pathway, indicating that RARγ might serve as a potential therapeutic target for chemoresistant CRC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5397258PMC
http://dx.doi.org/10.1080/15384101.2017.1295180DOI Listing

Publication Analysis

Top Keywords

wnt/β-catenin pathway
12
rarγ knockdown
12
crc cells
12
crc
11
rarγ
10
retinoic acid
8
acid receptor
8
multi-drug resistance
8
colorectal cancer
8
crc specimens
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!