AI Article Synopsis

Article Abstract

Although great efforts are being made using growth factors and gene therapy, the repair of bone defects remains a major challenge in modern medicine that has resulted in an increased burden on both healthcare and the economy. Emerging tissue engineering techniques that use of combination of biodegradable poly-lactic-co-glycolic acid (PLGA) and mesenchymal stem cells have shed light on improving bone defect healing; however, additional growth factors are also required with these methods. Therefore, the development of novel and cost-effective approaches is of great importance. Our in vitro results demonstrated that ESW treatment (10 kV, 500 pulses) has a stimulatory effect on the proliferation and osteogenic differentiation of bone marrow-derived MSCs (BMSCs). Histological and micro-CT results showed that PLGA scaffolds seeded with ESW-treated BMSCs produced more bone-like tissue with commitment to the osteogenic lineage when subcutaneously implanted in vivo, as compared to control group. Significantly greater bone formation with a faster mineral apposition rate inside the defect site was observed in the ESW group compared to control group. Biomechanical parameters, including ultimate load and stress at failure, improved over time and were superior to those of the control group. Taken together, this innovative approach shows significant potential in bone tissue regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5341040PMC
http://dx.doi.org/10.1038/srep44130DOI Listing

Publication Analysis

Top Keywords

control group
12
innovative approach
8
bone defect
8
defect healing
8
plga scaffolds
8
scaffolds seeded
8
mesenchymal stem
8
stem cells
8
growth factors
8
compared control
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!