The use of screening and brief interventions (SBI) has been proposed to reduce future alcohol misuse and injury in traumatic brain injury (TBI) patients. As a result a SBI protocol for TBI patients was introduced with nursing training at a community hospital. In the 2 years following the implementation of a SBI protocol and nursing training, the number of patients with positive alcohol results decreased. The number of brief interventions increased to 83 (40.1%, 95% confidence limit [CL] = 33.4, 46.8), and CAGE questionnaire screenings decreased to 88 (42.5%, 95% CL = 35.8, 49.2), with 31 (35.2%) having positive results. These results highlight the need to assess processes and training in the emergency department to ensure that SBIs occur.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5349301 | PMC |
http://dx.doi.org/10.1097/JTN.0000000000000275 | DOI Listing |
STAR Protoc
January 2025
School of Medicine, Wuhan University of Science and Technology, Wuhan 430030, China. Electronic address:
Alternating bilateral sensory stimulation (ABS) is a clinical physical therapy technique effective in treating post-traumatic stress disorder (PTSD). However, its utilization in treating conditions beyond PTSD remains limited. Here, we present a protocol to reduce ethanol-induced conditioned place preference (CPP) using 4 Hz ABS.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, USA.
Therapeutic drug development for central nervous system injuries, such as traumatic brain injury (TBI), presents significant challenges. TBI results in primary mechanical damage followed by secondary injury, leading to cognitive dysfunction and memory loss. Our recent study demonstrated the potential of carbon monoxide-releasing molecules (CORMs) to improve TBI recovery by enhancing neurogenesis.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.
Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Translational Research and New Surgical and Medical Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy.
Psychedelics, historically celebrated for their cultural and spiritual significance, have emerged as potential breakthrough therapeutic agents due to their profound effects on consciousness, emotional processing, mood, and neural plasticity. This review explores the mechanisms underlying psychedelics' effects, focusing on their ability to modulate brain connectivity and neural circuit activity, including the default mode network (DMN), cortico-striatal thalamo-cortical (CSTC) loops, and the relaxed beliefs under psychedelics (REBUS) model. Advanced neuroimaging techniques reveal psychedelics' capacity to enhance functional connectivity between sensory cerebral areas while reducing the connections between associative brain areas, decreasing the rigidity and rendering the brain more plastic and susceptible to external changings, offering insights into their therapeutic outcome.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah 41477, Saudi Arabia.
Background: Traumatic brain injury (TBI) is a leading cause of mortality worldwide and often results in substantial cognitive, motor, and psychological impairments, triggering oxidative stress, neuroinflammation, and neurodegeneration. This study examined the neuroprotective effects of azithromycin (AZI) in TBI.
Methods: TBI was induced in rats using the weight-drop method.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!