Large ring cyclodextrins have become increasingly important for drug delivery applications. In this work, we have performed replica-exchange molecular dynamics simulations using both implicit and explicit water solvation models to study the conformational diversity of iota-cyclodextrin containing 14 α-1,4 glycosidic linked d-glucopyranose units (CD14). The new quantifiable calculation methods are proposed to analyze the openness, bending, and twisted conformation of CD14 in terms of circularity, biplanar angle, and one-directional conformation (ODC). CD14 in GB implicit water model (Igb5) was found mostly in an opened conformation with average circularity of 0.39 ± 0.16 and a slight bend with average biplanar angle of 145.5 ± 16.0°. In contrast, CD14 in TIP3P explicit water solvation is significantly twisted with average circularity of 0.16 ± 0.10, while 29.1% are ODCs. In addition, classification of CD14 conformations using a Gaussian mixture model (GMM) shows that 85.0% of all CD14 in implicit water at 300 K correspond to the elliptical conformation, in contrast to 82.3% in twisted form in explicit water. GMM clustering also reveals minority conformations of CD14 such as the 8-shape, boat-form, and twisted conformations. This work provides fundamental insights into CD14 conformation, influence of solvation models, and also proposes new quantifiable analysis techniques for molecular conformation studies in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.6b00595 | DOI Listing |
Adv Mater
January 2025
Department of Chemistry, University College London, London, WC1E 7JE, UK.
Long-standing challenges including notorious side reactions at the Zn anode, low Zn anode utilization, and rapid cathode degradation at low current densities hinder the advancement of aqueous zinc-ion batteries (AZIBs). Inspired by the critical role of capping agents in nanomaterials synthesis and bulk crystal growth, a series of capping agents are employed to demonstrate their applicability in AZIBs. Here, it is shown that the preferential adsorption of capping agents on different Zn crystal planes, coordination between capping agents and Zn ions, and interactions with metal oxide cathodes enable preferred Zn (002) deposition, water-deficient Zn ion solvation structure, and a dynamic cathode-electrolyte interface.
View Article and Find Full Text PDFJ Mol Model
January 2025
Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, 48128, USA.
Context: Riboflavin (RF), also known as B2 vitamin, is the precursor to flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), two co-enzymes involved in many electron transport processes. Interactions of the isoalloxazine ring, common to all three compounds, are of great interest due to their biological function in flavoproteins and relevance in the transport by the carrier protein leading to development of drug delivery strategies and non-invasive diagnostics techniques. Based on protein crystallographic data, a computational investigation of the interactions in the complexes between lumiflavin, a model compound, and aromatic amino acids, tyrosine and tryptophan, was pursued with the goal of characterizing noncovalent interactions.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2 Str., 30-387 Kraków, Poland.
The large numbers of ion exchange resins used in various industries (food, pharmaceutitics, mining, hydrometallurgy), and especially in water treatment, are based on cross-linked polystyrene and divinylbenzene copolymers with functional groups capable of ion exchange. Their advantage, which makes them environmentally friendly, is the possibility of their regeneration and reuse. Taking into account the wide application of these materials, styrene-divinylbenzene resin with a quaternary ammonium functional group, AmberliteIRA402, was characterized using a well-known and widely used method, FT-IR spectroscopy.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa.
The progressive development of resistance in to almost all available antibiotics has made it crucial to develop novel approaches to tackling multi-drug resistance (MDR). One of the primary causes of antibiotic resistance is the over-expression of the MtrCDE efflux pump protein, making this protein a vital target for fighting against antimicrobial resistance (AMR) in . This study was aimed at evaluating the potential MtrCDE efflux pump inhibitors (EPIs) and their stability in treating gonorrhoea infection.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Energy and Materials Engineering and Advanced Energy and Electronic Materials Research Center, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
In lithium metal batteries, accurately estimating the Li solvation ability of solvents is essential for effectively modulating the Li solvation sheath to form a stable interphase and achieve high ionic conductivity. However, previous studies have shown that the theoretically calculated Li binding energy, commonly used to evaluate solvation ability, exhibits only a moderate correlation with experimentally measured ionic conductivity (R = 0.68).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!