We conducted comparative phylogeographic and population genetic analyses of Plestiodon kishinouyei and P. stimpsonii, two sympatric skinks endemic to islands in the southern Ryukyus, to explore different factors that have influenced population structure. Previous phylogenetic studies using partial mitochondrial DNA indicate similar divergence times from their respective closest relatives, suggesting that differences in population structure are driven by intrinsic attributes of either species rather than the common set of extrinsic factors that both presumably have been exposed to throughout their history. In this study, analysis of mtDNA sequences and microsatellite polymorphism demonstrate contrasting patterns of phylogeography and population structure: P. kishinouyei exhibits a lower genetic variability and lower genetic differentiation among islands than P. stimpsonii, consistent with recent population expansion. However, historical demographic analyses indicate that the relatively high genetic uniformity in P. kishinouyei is not attributable to recent expansion. We detected significant isolation-by-distance patterns among P. kishinouyei populations on the land bridge islands, but not among P. stimpsonii populations occurring on those same islands. Our results suggest that P. kishinouyei populations have maintained gene flows across islands until recently, probably via ephemeral Quaternary land bridges. The lower genetic variability in P. kishinouyei may also indicate smaller effective population sizes on average than that of P. stimpsonii. We interpret these differences as a consequence of ecological divergence between the two species, primarily in trophic level and habitat preference.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10709-017-9960-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!