The purpose of this review is to summarize our knowledge and understanding of the physiological importance and the mechanisms underlying flow-activated proximal tubule transport. Since the earliest micropuncture studies of mammalian proximal tubule, it has been recognized that tubular flow is an important regulator of sodium, potassium, and acid-base transport in the kidney. Increased fluid flow stimulates Na and HCO absorption in the proximal tubule via stimulation of Na/H-exchanger isoform 3 (NHE3) and H-ATPase. In the proximal tubule, brush border microvilli are the major flow sensors, which experience changes in hydrodynamic drag and bending moment as luminal flow velocity changes and which transmit the force of altered flow to cytoskeletal structures within the cell. The signal to NHE3 depends upon the integrity of the actin cytoskeleton; the signal to the H-ATPase depends upon microtubules. We have demonstrated that alterations in fluid drag impact tubule function by modulating ion transporter availability within the brush border membrane of the proximal tubule. Beyond that, there is evidence that transporter activity within the peritubular membrane is also modulated by luminal flow. Secondary messengers that regulate the flow-mediated tubule function have also been delineated. Dopamine blunts the responsiveness of proximal tubule transporters to changes in luminal flow velocity, while a DA1 antagonist increases flow sensitivity of solute reabsorption. IP3 receptor-mediated intracellular Ca signaling is critical to transduction of microvillus drag. In this review, we summarize our findings of the regulatory mechanism of flow-mediated Na and HCO transport in the proximal tubule and review available information about flow sensing and regulatory mechanism of glomerulotubular balance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6162058 | PMC |
http://dx.doi.org/10.1007/s00424-017-1960-8 | DOI Listing |
Front Med (Lausanne)
January 2025
Department of Internal Medicine, Texas Tech University Health Sciences Centre, Lubbock, TX, United States.
While changes in glomerular function and structure may herald diabetic kidney disease (DKD), many studies have underscored the significance of tubule-interstitial changes in the progression of DKD. Indeed, tubule-interstitial fibrosis may be the most important determinant of progression of DKD as in many forms of chronic glomerulopathies. The mechanisms underlying the effects of tubular changes on glomerular function in DKD have intrigued many investigators, and therefore, the signaling mechanisms underlying the cross-talk between tubular cells and glomerular cells have been the focus of investigation in many recent studies.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Endocrine Medicine, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201306, Chin, China.
Background And Objective: Mitochondria are crucial to the function of renal tubular cells, and their dynamic perturbation in many aspects is an important mechanism of diabetic kidney disease (DKD). Single-nucleus RNA sequencing (snRNA-seq) technology is a high-throughput sequencing analysis technique for RNA at the level of a single cell nucleus. Here, our DKD mouse kidney single-cell RNA sequencing conveys a more comprehensive mitochondrial profile, which helps us further understand the therapeutic response of this unique organelle family to drugs.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, China.
Renal fibrosis is a common pathway involved in the progression of various chronic kidney diseases to end-stage renal disease. Recent studies show that mitochondrial injury of renal tubular epithelial cells (RTECs) is a crucial pathological foundation for renal fibrosis. However, the underlying regulatory mechanisms remain unclear.
View Article and Find Full Text PDFSci Rep
January 2025
U1248 Pharmacology & Transplantation, Inserm, Univ. Limoges, Limoges, France.
Deciphering the sources of variability in drug responses requires to understand the processes modulating drug pharmacokinetics. However, pharmacological research suffers from poor reproducibility across clinical, animal, and experimental models. Predictivity can be improved by using Organs-on-Chips, which are more physiological, human-oriented, micro-engineered devices that include microfluidics.
View Article and Find Full Text PDFCEN Case Rep
January 2025
Nephrology Center and Okinaka Memorial Institute for Medical Research, Toranomon Hospital, 2-2-2, Toranomon, Minato, Tokyo, Japan.
A 54-year-old man who had been on the kidney donor register for 32 years received a kidney from a 9-year-old boy who had died of fulminant myocarditis. The post-operative course was poor, and hemodialysis was still needed after surgery. A kidney biopsy one hour after surgery showed a neutrophil-predominant inflammatory cell infiltrate localized to the peritubular capillaries (PTC) and acute tubular necrosis of the proximal tubule.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!