Ischemic reperfusion (I/R) contributes to deleterious cardiac remodeling and heart failure. The deacetylase SIRT1 has been shown to protect the heart from I/R injury. We examined the mechanism whereby I/R injury represses SIRT1 transcription in the myocardium. There was accumulation of trimethylated histone H3K9 on the proximal SIRT1 promoter in the myocardium in mice following I/R injury and in cultured cardiomyocytes exposed to hypoxia-reoxygenation (H/R). In accordance, the H3K9 trimethyltransferase SUV39H1 bound to the SIRT1 promoter and repressed SIRT1 transcription. SUV39H1 expression was up-regulated in the myocardium in mice following I/R insults and in H/R-treated cardiomyocytes paralleling SIRT1 down-regulation. Silencing SUV39H1 expression or suppression of SUV39H1 activity erased H3K9Me3 from the SIRT1 promoter and normalized SIRT1 levels in cardiomyocytes. Meanwhile, SUV39H1 deficiency or inhibition attenuated I/R-induced infarction and improved heart function in mice likely through influencing ROS levels in a SIRT1-dependent manner. Therefore, our data uncover a novel mechanism for SIRT1 trans-repression during cardiac I/R injury and present SUV39H1 as a druggable target for the development of therapeutic strategies against ischemic heart disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00395-017-0608-3 | DOI Listing |
Drug Des Devel Ther
January 2025
Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China.
Purpose: This study aimed to assess the protective effect of a clinical dose esketamine on cerebral ischemia/reperfusion (I/R) injury and to reveal the potential mechanisms associated with microglial polarization and autophagy.
Methods: Experimental cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in adult rats and simulated by oxygen-glucose deprivation (OGD) in BV-2 microglial cells. Neurological and sensorimotor function, cerebral infarct volume, histopathological changes, mitochondrial morphological changes, and apoptosis of ischemic brain tissues were assessed in the presence or absence of esketamine and the autophagy inducer rapamycin.
World J Cardiol
January 2025
Cardiac Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.
Background: Myocardial ischemia/reperfusion (I/R) injury, which is associated with high morbidity and mortality, is a main cause of unexpected myocardial injury after acute myocardial infarction. However, the underlying mechanism remains unclear. Circular RNAs (circRNAs), which are formed from protein-coding genes, can sequester microRNAs or proteins, modulate transcription and interfere with splicing.
View Article and Find Full Text PDFFood Funct
January 2025
The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha 410000, China.
A balanced diet is essential for maintaining human health. Increasing evidence suggests that dietary and nutritional interventions contribute to disease management and are associated with reduced healthcare costs and economic burden. Ferroptosis, a novel type of regulated cell death (RCD) driven by lipid peroxidation, has been shown to be involved in various pathological conditions, including diabetes, ischemia/reperfusion (I/R) injury, inflammation-related diseases, and cancer.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
February 2025
Department of Cardiology, Affiliated Hospital of Hebei University, Baoding, China.
Ischemia-reperfusion (I/R) injury is a significant clinical problem impacting the heart and other organs, such as the kidneys and liver. This study explores the protective effects of oxycodone on myocardial I/R injury and its underlying mechanisms. Using a myocardial I/R model in Sprague-Dawley (SD) rats and an oxygen-glucose deprivation/reoxygenation (OGD/R) model in H9c2 cells, we administered oxycodone and inhibited AMP-activated protein kinase (AMPK) with Compound C (C.
View Article and Find Full Text PDFCell Death Dis
January 2025
Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.
Programmed necrosis/necroptosis greatly contributes to the pathogenesis of cardiac disorders including myocardial infarction, ischemia/reperfusion (I/R) injury and heart failure. However, the fundamental mechanism underlying myocardial necroptosis, especially the mitochondria-dependent death pathway, is poorly understood. Synaptotagmin-1 (Syt1), a Ca sensor, is originally identified in nervous system and mediates synchronous neurotransmitter release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!