This study determined whether N-acetylcysteine (NAC) could improve intestinal function through phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), epithelial growth factor receptor (EGFR), toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB), adenosine 5'-monophosphate-activated protein kinase (AMPK), and type I interferon (IFN) signaling pathways in a piglet model of lipopolysaccharides (LPS) challenge. Thirty-two piglets (24-day-old) were randomly allocated to one of four treatments, with eight replicates per treatment and one piglet per replicate. The experiment consisted of four treatments in a 2 × 2 factorial arrangement with two diets (supplemented with 0 or 500 mg NAC/kg diet) and saline or LPS administration. On day 20 of the trial, piglets in the LPS and LPS + NAC groups were intraperitoneally injected with 0 (saline) or 100 μg LPS/kg BW. Blood samples were obtained at 3 h and intestinal mucosae were collected at 6 h post LPS or saline injection. The growth performance was not affected by dietary NAC. LPS induced intestinal dysfunction, as indicated by: (1) reductions in the small-intestinal glutathione concentrations and plasma D-xylose levels; (2) elevations in plasma diamine oxidase activity, mucosal MMP3 mRNA levels and caspase-3 protein abundance; (3) reduced the activities of the small-intestinal mucosal maltase, sucrase and lactase. The adverse effects of LPS on porcine intestinal function and redox status were mitigated by NAC supplementation through the activation of multiple signaling pathways involving PI3K/Akt/mTOR, EGFR, TLR4/NF-κB, AMPK, and type I IFN. Our findings provide novel mechanisms for beneficial effects of NAC in protecting the intestine from inflammation in animals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00726-017-2389-2 | DOI Listing |
Chin Med
January 2025
Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
Background: This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects.
Methods: HFD-induced obese mice were treated with WMW.
Poult Sci
December 2024
Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia.
This study evaluated the effect of wheat germ oil (WGO), Bacillus subtilis, and their combination on growth performance, immune response, nutrient digestibility, intestinal microbial, oxidative status, and gene expression in heat-stressed broilers. Four hundred one-day-old male Ross 308 broilers were distributed into five pens (20 birds/pen) in four experimental groups: a control (CON) without additives, WGO group fed diet with WGO at 200 mg.kg, BS group fed diet with B.
View Article and Find Full Text PDFAnnu Rev Immunol
January 2025
2Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden; email:
The mucosal surfaces of the body are the most vulnerable points for infection because they are lined by single or multiple layers of very active epithelial cells. The main protector of these cells is the mucus system generated by the specialized goblet cells secreting its main components, the gel-forming mucins. The organization of the mucus varies from an attached mucus that is impenetrable to bacteria in the large intestine to a nonattached, more penetrable mucus in the small intestine and airways.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea.
The identification of immune environments and cellular interactions in the colon microenvironment is essential for understanding the mechanisms of chronic inflammatory disease. Despite occurring in the same organ, there is a significant gap in understanding the pathophysiology of ulcerative colitis (UC) and colorectal cancer (CRC). Our study aims to address the distinct immunopathological response of UC and CRC.
View Article and Find Full Text PDFFood Funct
January 2025
Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
Gut dysbiosis serves as an underlying risk factor for the development of hypertension. The resolution of this dysbiosis has emerged as a promising strategy in improving hypertension. Food-derived bioactive protein peptides have become increasingly more attractive in ameliorating hypertension, primarily due to their anti-inflammatory and anti-oxidant activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!