Lacunes of presumed vascular origin (lacunes) are associated with an increased risk of stroke, gait impairment, and dementia and are a primary imaging feature of the small vessel disease. Quantification of lacunes may be of great importance to elucidate the mechanisms behind neuro-degenerative disorders and is recommended as part of study standards for small vessel disease research. However, due to the different appearance of lacunes in various brain regions and the existence of other similar-looking structures, such as perivascular spaces, manual annotation is a difficult, elaborative and subjective task, which can potentially be greatly improved by reliable and consistent computer-aided detection (CAD) routines. In this paper, we propose an automated two-stage method using deep convolutional neural networks (CNN). We show that this method has good performance and can considerably benefit readers. We first use a fully convolutional neural network to detect initial candidates. In the second step, we employ a 3D CNN as a false positive reduction tool. As the location information is important to the analysis of candidate structures, we further equip the network with contextual information using multi-scale analysis and integration of explicit location features. We trained, validated and tested our networks on a large dataset of 1075 cases obtained from two different studies. Subsequently, we conducted an observer study with four trained observers and compared our method with them using a free-response operating characteristic analysis. Shown on a test set of 111 cases, the resulting CAD system exhibits performance similar to the trained human observers and achieves a sensitivity of 0.974 with 0.13 false positives per slice. A feasibility study also showed that a trained human observer would considerably benefit once aided by the CAD system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5322213 | PMC |
http://dx.doi.org/10.1016/j.nicl.2017.01.033 | DOI Listing |
J Orthop Surg Res
January 2025
Department of Medical Equipment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
Background: Adolescent idiopathic scoliosis (AIS) is a complex three-dimensional deformity, and up to now, there has been no literature reporting the analysis of a large sample of X-ray imaging parameters based on artificial intelligence (AI) for it. This study is based on the accurate and rapid measurement of x-ray coronal imaging parameters in AIS patients by AI, to explore the differences and correlations, and to further investigate the risk factors in different groups, so as to provide a theoretical basis for the diagnosis and surgical treatment of AIS.
Methods: Retrospective analysis of 3192 patients aged 8-18 years who had a full-length orthopantomogram of the spine and were diagnosed with AIS at the First Affiliated Hospital of Zhengzhou University from January 2019 to March 2024.
BMC Neurol
January 2025
Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, School of Medicine, College of Medicine, National Sun Yat-Sen University, No. 123 Ta-Pei Road, Niao-Sung Dist, Kaohsiung, 83305, Taiwan.
Background And Purpose: White matter hyperintensities in brain MRI are key indicators of various neurological conditions, and their accurate segmentation is essential for assessing disease progression. This study aims to evaluate the performance of a 3D convolutional neural network and a 3D Transformer-based model for white matter hyperintensities segmentation, focusing on their efficacy with limited datasets and similar computational resources.
Materials And Methods: We implemented a convolution-based model (3D ResNet-50 U-Net with spatial and channel squeeze & excitation) and a Transformer-based model (3D Swin Transformer with a convolutional stem).
Sci Rep
January 2025
College of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, 830017, China.
Hepatic cystic echinococcosis (HCE), a life-threatening liver disease, has 5 subtypes, i.e., single-cystic, polycystic, internal capsule collapse, solid mass, and calcified subtypes.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
College of Computer, Chongqing University, No. 55 Daxuecheng South Rd, Shapingba, 401331, Chongqing, China.
Convolutional neural networks (CNNs) have become indispensable to medical image diagnosis research, enabling the automated differentiation of diseased images from extensive medical image datasets. Due to their efficacy, these methods raise significant privacy concerns regarding patient images and diagnostic models. To address these issues, some researchers have explored privacy-preserving medical image diagnosis schemes using fully homomorphic encryption (FHE).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electronics, Information and Communication Engineering, Kangwon National University, Samcheok, Republic of Korea.
Detecting brain tumours (BT) early improves treatment possibilities and increases patient survival rates. Magnetic resonance imaging (MRI) scanning offers more comprehensive information, such as better contrast and clarity, than any alternative scanning process. Manually separating BTs from several MRI images gathered in medical practice for cancer analysis is challenging and time-consuming.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!