Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report a novel Raman spectroscopy method for in situ cellular level analysis of the thyroid. Thyroids are harvested from control and lithium treated mice. Lithium is used to treat bipolar disorder, but affects thyroid function. Raman spectra are acquired with a confocal setup (514 nm laser, 20 µm spot) focused on a follicular lumen. Raman peaks are observed at 1440, 1656, and 1746 cm, corresponding to tyrosine, an important amino acid for protein synthesis. Peaks are also observed at 563, 1087, 1265 and 1301 cm. With lithium, the tyrosine peaks increase, indicating tyrosine buildup. Raman spectroscopy can study the impact of many exogenous treatments on thyroid biochemistry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5330565 | PMC |
http://dx.doi.org/10.1364/BOE.8.000670 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!