Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Black swans are improbable events that nonetheless occur-often with profound consequences. Such events drive important transitions in social systems (e.g., banking collapses) and physical systems (e.g., earthquakes), and yet it remains unclear the extent to which ecological population numbers buffer or suffer from such extremes. Here, we estimate the prevalence and direction of black-swan events (heavy-tailed process noise) in 609 animal populations after accounting for population dynamics (productivity, density dependence, and typical stochasticity). We find strong evidence for black-swan events in [Formula: see text]4% of populations. These events occur most frequently for birds (7%), mammals (5%), and insects (3%) and are not explained by any life-history covariates but tend to be driven by external perturbations such as climate, severe winters, predators, parasites, or the combined effect of multiple factors. Black-swan events manifest primarily as population die-offs and crashes (86%) rather than unexpected increases, and ignoring heavy-tailed process noise leads to an underestimate in the magnitude of population crashes. We suggest modelers consider heavy-tailed, downward-skewed probability distributions, such as the skewed Student [Formula: see text] used here, when making forecasts of population abundance. Our results demonstrate the importance of both modeling heavy-tailed downward events in populations, and developing conservation strategies that are robust to ecological surprises.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5373335 | PMC |
http://dx.doi.org/10.1073/pnas.1611525114 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!